第80步 时间序列建模实战:GRNN回归建模

基于WIN10的64位系统演示

一、写在前面

这一期,我们使用Matlab进行GRNN模型的构建。

使用的数据如下:

采用《PLoS One》2015年一篇题目为《Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China》文章的公开数据做演示。数据为江苏省2004年1月至2012年12月肾综合症出血热月发病率。运用2004年1月至2011年12月的数据预测2012年12个月的发病率数据。

由于Matlab语言用的不多了。所以,直接上我封装好的Matlab小程序即可。

二、GRNN模型简单介绍

GRNN(广义回归神经网络,Generalized Regression Neural Network)是一种基于径向基函数(Radial Basis Function, RBF)的神经网络。GRNN 可以用于回归分析,它提供了一种简单但强大的方法来估计给定输入的连续输出。

1GRNN 的基本结构和工作流程如下:

输入层:与输入数据的特征数相同的神经元数量。

模式层:与训练数据的样本数相同的神经元数量。每个神经元与一个训练样本相关联。

径向基函数:在模式层中,每个神经元都使用一个RBF。RBF度量输入样本与相应的训练样本之间的距离,并根据这个距离生成一个激活值。常用的RBF包括高斯函数。

输出层:基于模式层神经元的激活值和相关权重计算的预测输出。在GRNN中,输出是所有模式层神经元输出的加权平均。

GRNN的一个关键参数是平滑因子(spread), 它决定了径向基函数的宽度。平滑因子对模型的性能有很大影响,需要通过交叉验证等技术来确定。

2GRNN的优势:

非参数性:GRNN不假定数据的分布,使其对各种数据分布都很鲁棒。

实时学习:由于GRNN的直观结构,新的样本可以在不重新训练整个模型的情况下轻松地加入。

只有一个主要超参数:与其他神经网络相比,GRNN仅有平滑因子作为主要超参数,使其调优相对简单。

三、GRNN模型简单介绍

1.模型方法

运用时间序列的前N个数值来预测第N+1个数值。首先将原始数据分为训练集和测试集,通过逐步测试N值和spread值的方法来获取最优模型,即模型的测试误差最小。然后用最优模型来预测所需要预测的数值。

2.界面介绍

如图一所示,界面分为寻找最优模型参数界面和最优模型预测界面。

2.1寻找最优模型参数

2.1.1输入窗口

训练集 输入训练集数据。

测试集 输入测试集数据。

N取值范围 输入N值的最大值以及最小值,步长默认为1。其中最小值大于等于1,最大值小于等于训练集数据个数。

光滑因子取值范围 输入光滑因子的最大最小值以及步长。该参数的取值范围越宽,步长越小,则程序运行的时间越长。为提升工作效率,应合理取值。

测试集数据个数 输入测试数据的数目。

2.2.2输出窗口

最优N值 输出最优模型的N值。

最优光滑因子 输出最优模型的spread值。

以上两组输出窗口由 寻找 按钮实现。

拟合误差 MAE 输入模型拟合的平均绝对误差;

         MAPE 输出模型拟合的平均相对误差;

         MSE 输出模型拟合的均方误差;

         RMSE 输出模型拟合的均方根误差。

拟合效果图(一)显示拟合值以及真实值曲线。

以上两组输出窗口由 拟合 按钮实现。

预测误差 MAE 输出模型预测的平均绝对误差;

         MAPE 输出模型预测的平均相对误差;

         MSE 输出模型预测的均方误差;

         RMSE 输出模型预测的均方根误差。

预测效果图(右一)显示预测值以及真实值曲线。

以上两组输出窗口由 预测 按钮实现。

2.2最优模型预测

2.2.1输入窗口

输入值 输入所有原始数据,包括上一个界面的训练集和测试集。

最优N值 输入最优模型的N值。

最优光滑因子 输入最优模型的spread值。

预测个数 输入需要预测的数据的数目。

2.2.2输出窗口

预测值 输出预测值。点击 预测 按钮实现。

2.3重置 清空所有窗口,进行下一组数据操作。

图一 单因素GRNN模型图形用户界面(GUI)

3.实例演示

这里我们采用《PLoS One》2015年一篇题目为《Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China》文章的公开数据做演示。数据为江苏省2004年1月至2012年12月肾综合症出血热月发病率。运用2004年1月至2011年12月的数据预测2012年12个月的发病率数据。

3.1构建最优模型

将数据拆分为训练集和测试集。其中将2004年1月至2011年10月的数据纳入训练集,2011年11月和12月的数据纳入测试集。测试数据个数为2。N值取值范围选取1到94。光滑因子取值范围选取0.1到3,步长为0.1。如图二所示,点击 寻找

弹出读条窗口说明程序开始运行,运行时间取决于需要测试的N值和光滑因子的数目。

如图四所示,程序运行完毕。显示最优N值和最优光滑因子,分别为60和0.1。如果需要进一步精确光滑因子,可以进行第二次程序寻优。例如将光滑因子范围选取0.01到0.2,步长选择0.01,N值范围选取60到60。进一步寻找更精确的最优光滑因子。这里不进行演示。

如图五所示,点击 拟合 和 预测 按钮,分别显示拟合效果以及测试效果的四种误差值和曲线图。

3.2最优模型预测

如图六所示,输入全部原始数据,即2004年1月至2011年12月的月发病率数据。最优N值输入60,最优spread值输入0.1,预测个数输入12。点击 预测,如图七所示,得出最终预测值。预测值以列的形式显示,方便复制到Excel进行一步操作。

3.3预测效果

如表1所示,模型预测效果精度较高。平均绝对误差为0.00767,稍优于文章中ARIMA-GRNN模型的0.0078,稍劣于文章中的ARIMA-NARNN模型的0.0074。

1 单因素GRNN模型预测数值

时间

实际值

预测值

绝对误差

2012年1月

0.02659

0.03447

0.00788

2012年2月

0.01519

0.01710

0.00191

2012年3月

0.01519

0.01344

0.00176

2012年4月

0.03038

0.01731

0.01307

2012年5月

0.01772

0.02476

0.00703

2012年6月

0.02659

0.02647

0.00011

2012年7月

0.01013

0.01681

0.00668

2012年8月

0.00253

0.01132

0.00879

2012年9月

0.00760

0.01476

0.00717

2012年10月

0.02912

0.04103

0.01191

2012年11月

0.06457

0.07078

0.00621

2012年12月

0.07469

0.05523

0.01947

图二 寻找最优模型参数

图三 程序正在寻找最优模型参数

图四 显示最优N值以及最优spread值

图五 显示拟合效果以及预测效果误差值和曲线图

图六 输入原始数据模型参数进行预测

 显示最终预测值(以列显示)

四、小软件安装在此处

1. 双击MCRInstaller.exe安装

2. 自动解压:

3. 无脑点击下一步

4.安装完成。

四、底层代码

可能有需要,我就贴上吧:

function varargout = GRNN3(varargin)
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...'gui_Singleton',  gui_Singleton, ...'gui_OpeningFcn', @GRNN3_OpeningFcn, ...'gui_OutputFcn',  @GRNN3_OutputFcn, ...'gui_LayoutFcn',  [] , ...'gui_Callback',   []);
if nargin && ischar(varargin{1})gui_State.gui_Callback = str2func(varargin{1});
end
if nargout[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
elsegui_mainfcn(gui_State, varargin{:});
end
function GRNN3_OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;
guidata(hObject, handles);
function varargout = GRNN3_OutputFcn(hObject, eventdata, handles) 
varargout{1} = handles.output;
function xunlianji_Callback(hObject, eventdata, handles)
input = str2num(get(hObject,'String'));
guidata(hObject,handles);
function xunlianji_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
end
function ceshiji_Callback(hObject, eventdata, handles)
input = str2num(get(hObject,'String'));
if (isempty(input))set(hObject,'String','0')
end
guidata(hObject,handles);
function ceshiji_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
end
function nmin_Callback(hObject, eventdata, handles)
input = str2num(get(hObject,'String'));
if (isempty(input))set(hObject,'String','0')
end
guidata(hObject,handles);
function nmin_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
end
function nmax_Callback(hObject, eventdata, handles)
input = str2num(get(hObject,'String'));
if (isempty(input))set(hObject,'String','0')
end
guidata(hObject,handles);
function nmax_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
end
function spreadmin_Callback(hObject, eventdata, handles)
input = str2num(get(hObject,'String'));
if (isempty(input))set(hObject,'String','0')
end
guidata(hObject,handles);
function spreadmin_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
end
function spreadmax_Callback(hObject, eventdata, handles)
input = str2num(get(hObject,'String'));
if (isempty(input))set(hObject,'String','0')
end
guidata(hObject,handles);
function spreadmax_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
endfunction buchang_Callback(hObject, eventdata, handles)
input = str2num(get(hObject,'String'));
if (isempty(input))set(hObject,'String','0')
end
guidata(hObject,handles);
function buchang_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
end
function zuiyounzhi_Callback(hObject, eventdata, handles)
function zuiyounzhi_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
end
function ss_Callback(hObject, eventdata, handles)
function ss_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
end
function edit10_Callback(hObject, eventdata, handles)
function edit10_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
end
function xunzhao_Callback(hObject, eventdata, handles)
global A B C D E F G spread L n U 
A = str2num(get(handles.xunlianji,'String'));
B = str2num(get(handles.ceshiji,'String'));
C = str2num(get(handles.nmin,'String'));
D = str2num(get(handles.nmax,'String'));
E = str2num(get(handles.spreadmin,'String'));
F = str2num(get(handles.spreadmax,'String'));
G = str2num(get(handles.buchang,'String'));
U = str2num(get(handles.ceshixulie,'String'));
n=length(A);
A=A(:);
U=U(:);
test=[];
v = waitbar(0,'ÇëÉԵȡ¤¡¤¡¤')
for L= C:DA_n=zeros(L+1,n-L);for i=1:n-LA_n(:,i)=A(i:i+L);endtrainx=A_n(1:L,:);trainy=A_n(L+1,:);for spread= E:G:Fnet=newgrnn(trainx,trainy,spread);aa=A(end-L+1:end);yes=U;pre=sim(net,aa);while length(pre)<Baa=[aa(2:end);pre(end)];yy=sim(net,aa);pre=[pre;yy];          waitbar(spread/F)            endmse2 = mse(yes - pre);test=[test;L spread mse2];end
end
for k = 1:size(test,1)if test (k,3) == min (test(:,3))L = test(k,1);spread = test(k,2);end
end
set(handles.zuiyou,'String',num2str(spread));
set(handles.zuiyounzhi,'String',num2str(L));
guidata(hObject,handles);function mae_Callback(hObject, eventdata, handles)
function mae_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
end
function mape_Callback(hObject, eventdata, handles)
function mape_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
end
function rmse_Callback(hObject, eventdata, handles)
function rmse_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
end
function mse_Callback(hObject, eventdata, handles)
function mse_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
end
function mae2_Callback(hObject, eventdata, handles)
function mae2_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
end
function mape2_Callback(hObject, eventdata, handles)
function mape2_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
end
function rmse2_Callback(hObject, eventdata, handles)
function rmse2_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
end
function mse2_Callback(hObject, eventdata, handles)
function mse2_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
end
function shuruzhi_Callback(hObject, eventdata, handles)
input = str2num(get(hObject,'String'));
guidata(hObject,handles);
function shuruzhi_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
end
function zuiyounzhi2_Callback(hObject, eventdata, handles)
input = str2num(get(hObject,'String'));
guidata(hObject,handles);
function zuiyounzhi2_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
end
function zuiyouguanghuayinzi2_Callback(hObject, eventdata, handles)
input = str2num(get(hObject,'String'));
guidata(hObject,handles);
function zuiyouguanghuayinzi2_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
end
function yucezhi_Callback(hObject, eventdata, handles)
function yucezhi_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
end
function yuce_Callback(hObject, eventdata, handles)
global A H I B L
A = str2num(get(handles.shuruzhi,'String'));
H = str2num(get(handles.zuiyounzhi2,'String'));
I = str2num(get(handles.zuiyouguanghuayinzi2,'String'));
B = str2num(get(handles.number,'String'));
n=length(A);
A=A(:);
L = H;A_n=zeros(L+1,n-L);for i=1:n-LA_n(:,i)=A(i:i+L);endtrainx=A_n(1:L,:);trainy=A_n(L+1,:);spread = I;net=newgrnn(trainx,trainy,spread);aa=A(end-L+1:end);pre=sim(net,aa);while length(pre)<Baa=[aa(2:end);pre(end)];yy=sim(net,aa);pre=[pre;yy];end
set (handles.yucezhi,'String',num2str(pre),'Max',2);
guidata(hObject,handles);
function edit23_Callback(hObject, eventdata, handles)
function edit23_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
end
function zuiyou_Callback(hObject, eventdata, handles)
function zuiyou_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
end
function ceshi_Callback(hObject, eventdata, handles)
global A H I U B L
A = str2num(get(handles.xunlianji,'String'));
H = str2num(get(handles.zuiyounzhi,'String'));
I = str2num(get(handles.zuiyou,'String'));
U = str2num(get(handles.ceshixulie,'String'));
B = str2num(get(handles.ceshiji,'String'));
n=length(A);
A=A(:);
U=U(:);
L = H;A_n=zeros(L+1,n-L);for i=1:n-LA_n(:,i)=A(i:i+L);endtrainx=A_n(1:L,:);trainy=A_n(L+1,:);spread = I;net=newgrnn(trainx,trainy,spread);aa=A(end-L+1:end);yes=U;pre=sim(net,aa);while length(pre)<Baa=[aa(2:end);pre(end)];yy=sim(net,aa);pre=[pre;yy];end
MAE = mean(abs(yes - pre));
MAPE = mean(abs(yes - pre)./yes);
MSE = mse(yes - pre);
RMSE = sqrt(MSE);
set (handles.mae2,'String',num2str(round(MAE*1e4)/1e4));
set (handles.mape2,'String',num2str(round(MAPE*1e4)/1e4));
set (handles.mse2,'String',num2str(round(MSE*1e4)/1e4));
set (handles.rmse2,'String',num2str(round(RMSE*1e4)/1e4));
axes(handles.axes2)
plot(yes,'r','LineWidth',2);
hold on
plot(pre,'k--','LineWidth',1.5);
xlim([1,B])
title('Ô¤²âЧ¹ûÄâºÏÇúÏß')
legend('ʵ¼ÊÖµ','Ô¤²âÖµ','Location','NorthWest')
hold off
guidata(hObject,handles);
function ceshixulie_Callback(hObject, eventdata, handles)
function ceshixulie_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
end
function number_Callback(hObject, eventdata, handles)
function number_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
end
function pushbutton4_Callback(hObject, eventdata, handles)
global A H I U B L
A = str2num(get(handles.xunlianji,'String'));
H = str2num(get(handles.zuiyounzhi,'String'));
I = str2num(get(handles.zuiyou,'String'));
U = str2num(get(handles.ceshixulie,'String'));
B = str2num(get(handles.ceshiji,'String'));
n=length(A);
A=A(:);
L = H;A_n=zeros(L+1,n-L);for i=1:n-LA_n(:,i)=A(i:i+L);endtrainx=A_n(1:L,:);trainy=A_n(L+1,:);spread = I;net=newgrnn(trainx,trainy,spread);yy=sim(net,trainx);            mse3 = yy - trainy;
MAE = mean(abs(mse3));
MAPE = mean(abs(yy - trainy)./trainy);
MSE = mse (mse3);
RMSE = sqrt(mse(mse3));
set (handles.mae,'String',num2str(round(MAE*1e4)/1e4));
set (handles.mape,'String',num2str(round(MAPE*1e4)/1e4));
set (handles.mse,'String',num2str(round(MSE*1e4)/1e4));
set (handles.rmse,'String',num2str(round(RMSE*1e4)/1e4));
axes(handles.axes1)
plot(trainy,'r','LineWidth',2);
hold on
plot(yy,'k--','LineWidth',1.5);
xlim([1,n-L])
title('ÄâºÏЧ¹ûÄâºÏÇúÏß')
legend('ʵ¼ÊÖµ','Ô¤²âÖµ','Location','NorthWest')
hold off
guidata(hObject,handles);
function pushbutton5_Callback(hObject, eventdata, handles)
set(handles.zuiyou,'String',[]);
set(handles.zuiyounzhi,'String',[]);
set(handles.xunlianji,'String',[]);
set(handles.ceshiji,'String',[]);
set(handles.nmin,'String',[]);
set(handles.nmax,'String',[]);
set(handles.spreadmin,'String',[]);
set(handles.spreadmax,'String',[]);
set(handles.buchang,'String',[]);
set(handles.ceshixulie,'String',[]);
set(handles.mae2,'String',[]);
set(handles.mape2,'String',[]);
set(handles.mse2,'String',[]);
set(handles.rmse2,'String',[]);
cla(handles.axes2);
set(handles.mae,'String',[]);
set(handles.mape,'String',[]);
set(handles.mse,'String',[]);
set(handles.rmse,'String',[]);
cla(handles.axes1);
set(handles.shuruzhi,'String',[]);
set(handles.zuiyounzhi2,'String',[]);
set(handles.zuiyouguanghuayinzi2,'String',[]);
set(handles.number,'String',[]);
set(handles.yucezhi,'String',[]);
function pushbutton6_Callback(hObject, eventdata, handles)
close GRNN3
main

五、软件和数据

链接:https://pan.baidu.com/s/16hcDdFTtxfBsQ-9S53LiDw?pwd=jfj6

提取码:jfj6

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/92338.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用SDKMAN在Linux系统上安装JDK

本文使用的Linux发行版为Rocky Linux 9.2&#xff0c;可以当做CentOS的平替产品。 SDKMAN是一个sdk包管理工具&#xff0c;通过自带的命令可以快速切换软件环境&#xff0c; 官网地址&#xff1a;https://sdkman.io/。 1、安装sdkman&#xff1a; # curl -s "https://ge…

SpringBoot整合RocketMQ笔记

SpringBoot版本为2.3.12.Release RocketMQ对比kafka 学习链接 https://zhuanlan.zhihu.com/p/335216381 代码实战 https://www.cnblogs.com/RedOrange/p/17401238.html Centos安装rocketmq https://blog.csdn.net/chuige2013/article/details/123783612 RocketMQ详细配置与…

【C语言深入理解指针(2)】

1. 数组名的理解 在上⼀个博客我们在使⽤指针访问数组的内容时&#xff0c;有这样的代码&#xff1a; int arr[10] {1,2,3,4,5,6,7,8,9,10}; int *p &arr[0];这⾥我们使⽤ &arr[0] 的⽅式拿到了数组第⼀个元素的地址&#xff0c;但是其实数组名本来就是地址&#x…

C++ - 开散列的拉链法(哈希桶) 介绍 和 实现

前言 之前我们介绍了&#xff0c;闭散列 的 开放地址法实现的 哈希表&#xff1a;C - 开放地址法的哈希介绍 - 哈希表的仿函数例子_chihiro1122的博客-CSDN博客 但是 闭散列 的 开放地址法 虽然是哈希表实现的一种&#xff0c;但是这种方式实现的哈希表&#xff0c;有一个很大的…

【操作系统】了解Linux操作系统中PCB进程管理模块与进程PID

本篇要分享的内容是有关于操作系统中进程的内容。 目录 1.进程的简单理解 2.了解task_struct&#xff08;进程控制模块&#xff09;内容分类 3.task_struct&#xff08;进程控制模块&#xff09;中的PID 4.调用查看PID的函数 1.进程的简单理解 首先我们需要理解的是什么是…

C++指针的使用

文章目录 1.C指针1.1 定义指针1.2 使用指针 2.空指针和野指针2.1 空指针2.2 野指针 3.指针所占空间4.使用const修饰指针4.1 const修饰指针4.2 const修饰常量4.3 const 既修饰指针也修饰常量 5.指针操作数组6.指针做函数参数7.使用指针知识实现冒泡排序 1.C指针 指针其实就是一…

SpringBoot整合数据库连接

JDBC 1、数据库驱动 JDBC&#xff08;Java DataBase Connectivity&#xff09;&#xff0c;即Java数据库连接。简而言之&#xff0c;就是通过Java语言来操作数据库。 JDBC是sun公司提供一套用于数据库操作的接口. java程序员只需要面向这套接口编程即可。不同的数据库厂商&…

Ubuntu配置深度学习环境(TensorFlow和pyTorch)

文章目录 一、CUDA安装1.1 安装显卡驱动1.2 CUDA安装1.3 安装cuDNN 二、Anaconda安装三、安装TensorFlow和pyTorch3.1 安装pyTorch3.2 安装TensorFlow2 四、安装pyCharm4.1 pyCharm的安装4.2 关联anaconda的Python解释器 五、VScode配置anaconda的Python虚拟环境 前言&#xff…

计算机竞赛 深度学习手势识别 - yolo python opencv cnn 机器视觉

文章目录 0 前言1 课题背景2 卷积神经网络2.1卷积层2.2 池化层2.3 激活函数2.4 全连接层2.5 使用tensorflow中keras模块实现卷积神经网络 3 YOLOV53.1 网络架构图3.2 输入端3.3 基准网络3.4 Neck网络3.5 Head输出层 4 数据集准备4.1 数据标注简介4.2 数据保存 5 模型训练5.1 修…

数据结构:复杂度分析

目录 1 算法效率评估 1.1 实际测试 1.2 理论估算 2 迭代与递归 2.1 迭代 1. for 循环 2. while 循环 3. 嵌套循环 2.2 递归 1. 调用栈 2. 尾递归 3. 递归树 2.3 两者对比 3 时间复杂度 3.1 统计时间增长趋势 3.2 函数渐近上界…

MySQL学习笔记26

MySQL主从复制的搭建&#xff08;AB复制&#xff09; 传统AB复制架构&#xff08;M-S)&#xff1a; 说明&#xff1a;在配置MySQL主从架构时&#xff0c;必须保证数据库的版本高度一致&#xff0c;统一版本为5.7.31 环境规划&#xff1a; 编号主机名称主机IP地址角色信息1ma…

盛最多水的容器 接雨水【基础算法精讲 02】

盛雨水最多的容器 链接 : 11 盛最多水的容器 思路 : 双指针 &#xff1a; 1.对于两条确定的边界&#xff0c;l和r,取中间的线m与r组成容器&#xff0c;如果m的高度>l的高度&#xff0c;那么整个容器的长度会减小&#xff0c;如果低于l的高度&#xff0c;那么不仅高度可…

Flink安装及简单使用

目录 转载处&#xff08;个人用最新1.17.1测试&#xff09; 依赖环境 安装包下载地址 Flink本地模式搭建 安装 启动集群 查看WebUI 停止集群 Flink Standalone搭建 安装 修改flink-conf.yaml配置文件 修改workers文件 复制Flink安装文件到其他服务器 启动集群 查…

cesium 热力图(CesiumHeatmap)

cesium 热力图 可添加、删除、显示、隐藏 完整代码 <!DOCTYPE html> <html lang="en"><head><meta charset="utf-8">

mac如何卸载应用并删除文件,2023年最新妙招大公开!

大家好&#xff0c;今天小编要为大家分享一些关于mac电脑的小技巧&#xff0c;特别是关于如何正确卸载应用程序以及清理卸载后的残留文件。你知道吗&#xff1f;很多人都不知道&#xff0c;mac系统默认的卸载方式可能会导致一些残留文件滞留在你的电脑上&#xff0c;慢慢地占用…

openGauss学习笔记-86 openGauss 数据库管理-内存优化表MOT管理-内存表特性-MOT部署配置

文章目录 openGauss学习笔记-86 openGauss 数据库管理-内存优化表MOT管理-内存表特性-MOT部署配置86.1 总体原则86.2 重做日志&#xff08;MOT&#xff09;86.3 检查点&#xff08;MOT&#xff09;86.4 恢复&#xff08;MOT&#xff09;86.5 统计&#xff08;MOT&#xff09;86…

进入IT行业:选择前端开发还是后端开发?

一、前言 开发做前端好还是后端好&#xff1f;这是一个常见的问题&#xff0c;特别是对于初学者来说。在编程世界中&#xff0c;前端开发和后端开发分别代表着用户界面和数据逻辑&#xff0c;就像城市的两个不同街区一样。但是&#xff0c;究竟哪个街区更适合我们作为开发者呢…

Mapfree智驾方案,怎样实现成本可控?

整理|睿思 编辑|祥威 编者注&#xff1a;本文是HiEV出品的系列直播「智驾地图之变」第二期问答环节内容整理。 元戎启行副总裁刘轩与连线嘉宾奥维咨询董事合伙人张君毅、北汽研究总院智能网联中心专业总师林大洋、主持嘉宾周琳展开深度交流&#xff0c;并进行了答疑。 本期元…

【算法|贪心算法系列No.3】leetcode334. 递增的三元子序列

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 &#x1f354;本专栏旨在提高自己算法能力的同时&#xff0c;记录一下自己的学习过程&#xff0c;希望…

oracle分组合并数值带顺序

比如&#xff1a;有如下一张设备电子围栏位置坐标的表&#xff08;tb_equ_point&#xff09;。 equ_name:设备电子围栏名称 point_id:点位坐标id point_x:点位x坐标 point_y:点位y坐标。 附数据&#xff1a; INSERT INTO "tb_equ_point" ("EQU_NAME",…