Ubuntu配置深度学习环境(TensorFlow和pyTorch)

文章目录

  • 一、CUDA安装
    • 1.1 安装显卡驱动
    • 1.2 CUDA安装
    • 1.3 安装cuDNN
  • 二、Anaconda安装
  • 三、安装TensorFlow和pyTorch
    • 3.1 安装pyTorch
    • 3.2 安装TensorFlow2
  • 四、安装pyCharm
    • 4.1 pyCharm的安装
    • 4.2 关联anaconda的Python解释器
  • 五、VScode配置anaconda的Python虚拟环境


前言:最好是去这里看一下TensorFlow对应的CUDA版本,按照要求的版本安装,我是因为有其他程序必须要11.6才没有按照这个要求安装
在这里插入图片描述

一、CUDA安装

1.1 安装显卡驱动

查看推荐显卡

ubuntu-drivers devices

在这里插入图片描述

安装recommend推荐显卡版本,这里推荐的是535版本

sudo apt-get install nvidia-driver-535

要选择版本不然会自动更新内核。 但是我安装535会黑屏,只能安装了510,由于是刚安装的系统,更新了内核也没太大的影响,另外安装版本太低的话也不行,因为下面安装CUDA要求最小版本

1.2 CUDA安装

使用手动安装方法:

nvidia-smi

查看显卡驱动支持最高CUDA版本是12.1, 到cuda-toolkit-archive,选择需要的CUDA版本下载,如下图,选择runfile(local),并使用生成的指令进行下载和安装
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

回车取消安装显卡驱动,然后选择最后的安装:
在这里插入图片描述
在这里插入图片描述

安装成功之后环境配置,在.bashrc文件末尾添加环境变量:

sudo gedit ~/.bashrc
# 添加以下内容:
export PATH=/usr/local/cuda-11.6/bin${PATH:+:${PATH}} 
export LD_LIBRARY_PATH=/usr/local/cuda-11.6/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

或者终端输入以下命令添加:

# Taken from: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#post-installation-actions
echo 'export PATH=/usr/local/cuda-11.6/bin${PATH:+:${PATH}}' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=/usr/local/cuda-11.6/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}' >> ~/.bashrc

验证是否安装成功

nvcc -V

在这里插入图片描述

1.3 安装cuDNN

成功安装完CUDA之后,官网下载CUDA对应版本的cuDNN,前往cudnn-archive(需要注册账号),这里我选择的是8.9.4版本的cuDNN(Local Installer for Linux x86_64 (Tar)),对应11.x版本的CUDA:
在这里插入图片描述
下载完成后,在文件所在目录解压缩,注意自己下载文件的名称

tar -xvf cudnn-linux-x86_64-8.9.4.25_cuda11-archive.tar.xz

解压缩完成后,将部分文件复制转移/usr/local(注意:自己下载文件的名称, cudnn8.0以上会将版本信息更新到cudnn_version.h文件中,也需要将这个文件复制,否则验证的时候会没有反应) :

cd cudnn-linux-x86_64-8.9.4.25_cuda11-archive
sudo cp include/cudnn.h /usr/local/cuda/include/ 
sudo cp lib/libcudnn* /usr/local/cuda/lib64/ 
sudo chmod a+r /usr/local/cuda/include/cudnn.h
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*
sudo cp include/cudnn_version.h /usr/local/cuda/include/
cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2  #验证

二、Anaconda安装

进入Anaconda官网,点击Download下载(Anaconda会根据访问网页所使用的系统下载对应的版本,比如我这里下载的是Anaconda3-2023.03-Linux-x86_64.sh)

在这里插入图片描述
安装Anaconda

bash Anaconda3-2023.03-Linux-x86_64.sh

(1)查看安装协议,一直按Enter直到出现 Do you accept the license terms? [yes|no] ,输入yes即可继续安装;
(2)输入yes后会提示确认安装位置,这里点击Enter,默认即可;
(3)初始化Anaconda,这一步只需要根据提示输入yes即可;

在这里插入图片描述
在这里插入图片描述
重启终端进入conda基础环境,可以检查一下在此环境下的python位置和版本:
在这里插入图片描述
如果希望 conda 的基础环境在启动终端时不被激活,将 auto_activate_base 参数设置为 false:

conda config --set auto_activate_base false

后面想要再进入conda的base环境,只需要使用conda指令激活:

conda activate base

在这里插入图片描述

conda常用命令:

  • 创建conda环境
conda create --name 环境名 包名(多个包名用空格分隔)
# 例如:conda create --name my_env python=3.7 numpy pandas scipy
  • 激活(切换)conda环境
conda activate 环境名
# 例如:conda activate bas
  • 显示已创建的conda环境
conda info --envs
# 或者:conda info -e,亦或者conda env list
  • 删除指定的conda环境,
# 通过环境名删除
conda remove --name 要删除的环境名 --all# 通过指定环境文件位置删除(这个方法可以删除不同位置的同名环境)
conda remove -p 要删除的环境所在位置 --all
# 例如:conda remove -p /home/zard/anaconda3/envs/MaskRCNN --all

三、安装TensorFlow和pyTorch

3.1 安装pyTorch

进入pyTorch官网(https://pytorch.org/),往下拉,选择你的环境生成安装命令:
在这里插入图片描述
复制安装命令(我改成了11.6):

conda install pytorch torchvision torchaudio pytorch-cuda=11.6 -c pytorch -c nvidia

在这里插入图片描述
输入y安装(可能需要科学上网):
在这里插入图片描述
测试是否能够使用:

ipythonimport torch
torch.cuda.is_availbale()

3.2 安装TensorFlow2

# 创建一个虚拟环境
conda create -n tensorflow-gpu python=3.7
# 激活环境
conda activate tensorflow-gpupip install ipython
pip install tensorflow -U

在这里插入图片描述

注意不要安装tensorflow-gpu,会报以下错误,根据提示消息这时候安装tensorflow也是可以使用GPU的。
两种方法都可以让你的 TensorFlow 安装使用 GPU 加速(事实上,自 TensorFlow 2.1 版本开始,两个包在功能上基本相同),具体来说:

  • 使用 pip install --upgrade tensorflow 安装 TensorFlow 时,TensorFlow 应该能够自动检测和使用可用的 GPU 进行加速,前提是您的系统满足了相关的 GPU 驱动程序、CUDA 工具包和 cuDNN 库的要求。这是因为 TensorFlow 是一个通用框架,它可以在 CPU 和 GPU 上运行,但需要正确的配置和依赖项来利用 GPU。
  • 使用 pip install --upgrade tensorflow-gpu 安装 TensorFlow-GPU 版本时,它已经专门配置为利用 GPU 加速,无需额外的配置。

无论选择哪种方法,只要满足了 GPU 驱动程序、CUDA 工具包和 cuDNN 库的要求,TensorFlow 都应该能够正确地使用 GPU 进行加速。
在这里插入图片描述
可以通过检查可用的 GPU 数量来验证是否已启用 GPU 加速:

import tensorflow as tf
tf.test.is_gpu_available()
print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))

在这里插入图片描述

四、安装pyCharm

4.1 pyCharm的安装

进入官网(https://www.jetbrains.com.cn/en-us/pycharm/)下载pycharm
在这里插入图片描述
点击下载,往下翻,下载Community版本
在这里插入图片描述
下载完成后解压,进入bin目录,运行.sh文件

cd pycharm-community-2023.2.1/bin/
sh pycharm.sh

在这里插入图片描述
在这里插入图片描述
界面启动后,在打开的Pycharm软件界面左下角,点击设置图标,选择Create Deasktop Entry。关闭Pycharm,点击左下角显示应用程序,找到Pycharm,即可开始使用
点击进入plugins,选择Marketplace,搜索chinese,找到中文语言包(图标上有个“汉”字)进行安装,安装好后重启pycharm即可

在这里插入图片描述

4.2 关联anaconda的Python解释器

创建新项目之后,打开设置,选择python解释器:
在这里插入图片描述
添加python解释器,选择Conda环境,选择我们之前创建的虚拟环境:
在这里插入图片描述
可以看到我们安装的库已经有了
在这里插入图片描述
在这里插入图片描述

五、VScode配置anaconda的Python虚拟环境

实际上,我更习惯使用VScode,其简洁方便,我在使用Pycharm时总是遇到卡死的情况,并且字体,主题等等令人不爽,下面使用VScode配置anaconda的Python虚拟环境
首先我们要知道虚拟环境的python解释器位置,它位于#{YOUHOME}/anaconda3/envs/#{YOUEVN}/bin/python,例如我上面创建的虚拟环境:
在这里插入图片描述
然后在VScode左下角的设置中搜索python path,找到解释器路径设置,填入虚拟环境的解释器:
在这里插入图片描述
接下来就可以愉快使用啦(按F5运行哦):
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/92326.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机竞赛 深度学习手势识别 - yolo python opencv cnn 机器视觉

文章目录 0 前言1 课题背景2 卷积神经网络2.1卷积层2.2 池化层2.3 激活函数2.4 全连接层2.5 使用tensorflow中keras模块实现卷积神经网络 3 YOLOV53.1 网络架构图3.2 输入端3.3 基准网络3.4 Neck网络3.5 Head输出层 4 数据集准备4.1 数据标注简介4.2 数据保存 5 模型训练5.1 修…

数据结构:复杂度分析

目录 1 算法效率评估 1.1 实际测试 1.2 理论估算 2 迭代与递归 2.1 迭代 1. for 循环 2. while 循环 3. 嵌套循环 2.2 递归 1. 调用栈 2. 尾递归 3. 递归树 2.3 两者对比 3 时间复杂度 3.1 统计时间增长趋势 3.2 函数渐近上界…

MySQL学习笔记26

MySQL主从复制的搭建(AB复制) 传统AB复制架构(M-S): 说明:在配置MySQL主从架构时,必须保证数据库的版本高度一致,统一版本为5.7.31 环境规划: 编号主机名称主机IP地址角色信息1ma…

盛最多水的容器 接雨水【基础算法精讲 02】

盛雨水最多的容器 链接 : 11 盛最多水的容器 思路 : 双指针 : 1.对于两条确定的边界,l和r,取中间的线m与r组成容器,如果m的高度>l的高度,那么整个容器的长度会减小,如果低于l的高度,那么不仅高度可…

Flink安装及简单使用

目录 转载处(个人用最新1.17.1测试) 依赖环境 安装包下载地址 Flink本地模式搭建 安装 启动集群 查看WebUI 停止集群 Flink Standalone搭建 安装 修改flink-conf.yaml配置文件 修改workers文件 复制Flink安装文件到其他服务器 启动集群 查…

cesium 热力图(CesiumHeatmap)

cesium 热力图 可添加、删除、显示、隐藏 完整代码 <!DOCTYPE html> <html lang="en"><head><meta charset="utf-8">

mac如何卸载应用并删除文件,2023年最新妙招大公开!

大家好&#xff0c;今天小编要为大家分享一些关于mac电脑的小技巧&#xff0c;特别是关于如何正确卸载应用程序以及清理卸载后的残留文件。你知道吗&#xff1f;很多人都不知道&#xff0c;mac系统默认的卸载方式可能会导致一些残留文件滞留在你的电脑上&#xff0c;慢慢地占用…

openGauss学习笔记-86 openGauss 数据库管理-内存优化表MOT管理-内存表特性-MOT部署配置

文章目录 openGauss学习笔记-86 openGauss 数据库管理-内存优化表MOT管理-内存表特性-MOT部署配置86.1 总体原则86.2 重做日志&#xff08;MOT&#xff09;86.3 检查点&#xff08;MOT&#xff09;86.4 恢复&#xff08;MOT&#xff09;86.5 统计&#xff08;MOT&#xff09;86…

进入IT行业:选择前端开发还是后端开发?

一、前言 开发做前端好还是后端好&#xff1f;这是一个常见的问题&#xff0c;特别是对于初学者来说。在编程世界中&#xff0c;前端开发和后端开发分别代表着用户界面和数据逻辑&#xff0c;就像城市的两个不同街区一样。但是&#xff0c;究竟哪个街区更适合我们作为开发者呢…

Mapfree智驾方案,怎样实现成本可控?

整理|睿思 编辑|祥威 编者注&#xff1a;本文是HiEV出品的系列直播「智驾地图之变」第二期问答环节内容整理。 元戎启行副总裁刘轩与连线嘉宾奥维咨询董事合伙人张君毅、北汽研究总院智能网联中心专业总师林大洋、主持嘉宾周琳展开深度交流&#xff0c;并进行了答疑。 本期元…

【算法|贪心算法系列No.3】leetcode334. 递增的三元子序列

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 &#x1f354;本专栏旨在提高自己算法能力的同时&#xff0c;记录一下自己的学习过程&#xff0c;希望…

oracle分组合并数值带顺序

比如&#xff1a;有如下一张设备电子围栏位置坐标的表&#xff08;tb_equ_point&#xff09;。 equ_name:设备电子围栏名称 point_id:点位坐标id point_x:点位x坐标 point_y:点位y坐标。 附数据&#xff1a; INSERT INTO "tb_equ_point" ("EQU_NAME",…

番外3:下载+安装VMware(前期准备)

step1: 查看自己笔记本电脑配置&#xff1b; step2: 下载并安装VMware&#xff08;下载地址www..kkx.net/soft/16841.html&#xff09;这里选择本地普通下载&#xff1b; step3: 安装VMware过程中需要填写密钥&#xff08;本人用的最后一个&#xff09;; #UU54R-FVD91-488PP-7N…

友思特案例|友思特 Ensenso 3D相机:汽车工业自动化的革命性力量

01 内容摘要 在竞争激烈的汽车行业&#xff0c;自动化生产至关重要。友思特 Ensenso 3D相机为汽车制造商提供了可靠的工具和技术支持&#xff0c;助力多个关键环节。它在汽车座位泡棉切割中提高精确度&#xff0c;降低浪费&#xff0c;提高生产效率&#xff1b;在汽车压铸零部…

<泛型>带你更详细的认识泛型

了解泛型 现在有一个需求&#xff1a;写一个打印类&#xff0c;用来打印不同类型的数据 //类1 &#xff1a;打印Integer类型的数据 public class IntegerPrint {Integer content;public void Integer(Integer content) {this.content content;}public void print(){System.o…

Python3数据科学包系列(二):数据分析实战

Python3中类的高级语法及实战 Python3(基础|高级)语法实战(|多线程|多进程|线程池|进程池技术)|多线程安全问题解决方案 Python3数据科学包系列(一):数据分析实战 Python3数据科学包系列(二):数据分析实战 一&#xff1a;通过read_table函数读取数据创建(DataFrame)数据框 #…

九、GC收集日志

JVM由浅入深系列一、关于Java性能的误解二、Java性能概述三、了解JVM概述四、探索JVM架构五、垃圾收集基础六、HotSpot中的垃圾收集七、垃圾收集中级八、垃圾收集高级👋GC收集日志 ⚽️1. 认识GC收集日志 垃圾收集日志是一个重要的信息来源,对于与性能相关的一些悬而未决的…

1.5.C++项目:仿muduo库实现并发服务器之socket模块的设计

项目完整版在&#xff1a; 一、socket模块&#xff1a;套接字模块 二、提供的功能 Socket模块是对套接字操作封装的一个模块&#xff0c;主要实现的socket的各项操作。 socket 模块&#xff1a;套接字的功能 创建套接字 绑定地址信息 开始监听 向服务器发起连接 获取新连接 …

uni-app:实现页面效果3

效果 代码 <template><view><!-- 风速风向检测器--><view class"content_position"><view class"content"><view class"SN"><view class"SN_title">设备1</view><view class&quo…

2023.9.23 关于 HTTP 详解

目录 HTTP 协议 认识 URL HTTP 请求 认识方法 HTTP 响应 认识状态码 总结 HTTP 请求的构造 Form 表单构造 AJAX 构造 Postman 构造 HTTP 协议 应用层使用最广泛的协议浏览器 基于 HTTP协议 获取网站是 浏览器 和 服务器 之间的交互桥梁HTTP协议 基于传输层的 TCP协…