openGauss学习笔记-86 openGauss 数据库管理-内存优化表MOT管理-内存表特性-MOT部署配置

文章目录

    • openGauss学习笔记-86 openGauss 数据库管理-内存优化表MOT管理-内存表特性-MOT部署配置
      • 86.1 总体原则
      • 86.2 重做日志(MOT)
      • 86.3 检查点(MOT)
      • 86.4 恢复(MOT)
      • 86.5 统计(MOT)
      • 86.6 错误日志(MOT)
      • 86.7 内存(MOT)
      • 86.8 垃圾收集(MOT)
      • 86.9 JIT(MOT)
      • 86.10 默认MOT.conf文件

openGauss学习笔记-86 openGauss 数据库管理-内存优化表MOT管理-内存表特性-MOT部署配置

预置MOT用于创建工作MOT。为了获得最佳效果,建议根据应用程序的特定要求和偏好自定义MOT配置(在mot.conf文件中定义)。

该文件在服务器启动时只读。如果在系统运行中编辑此文件,则必须重新加载服务器才能使修改内容生效。

mot.conf文件与postgresql.conf配置文件在同一文件夹下。

在主备部署模式下,主备节点的mot.conf文件需要完全相同,否则,系统行为不明确。

阅读总体原则,根据需要查看和配置mot.conf文件。

img 说明:

以上描述了mot.conf文件中的各个设置。除上述内容外,要了解特定MOT功能(如恢复),可参考本用户手册的相关章节。例如,MOT恢复说明了mot.conf文件的恢复,包含影响MOT恢复的设置。此外,有关恢复的完整说明,请参阅“MOT管理”章节的MOT恢复。下文各相关章节中还提供了参考链接。

以下介绍了mot.conf文件中的各个部分,其包含的设置以及默认值。

86.1 总体原则

以下是编辑mot.conf文件的总体原则。

  • 每个设置项都带有默认值,如下所示:

    # name = value
    
  • 可以接受空格或留空。

  • 在各行添加#号可进行注释。

  • 每个设置项的默认值将作为注释显示在整个文件中。

  • 如果参数没有注释并且置入了新值,则定义新设置。

  • 对mot.conf文件的更改仅在数据库服务器启动或重装时生效。

内存单元的表示如下:

  • KB:千字节
  • MB:兆字节
  • GB:吉字节
  • TB:太字节

如果未指定内存单元,则假定为字节。

某些内存单位为postgresql.conf中的max_process_memory的百分比值。例如,20%。

时间单位表示如下:

  • us:微秒
  • ms:毫秒
  • s:秒
  • min:分钟
  • h:小时
  • d:天

如果未指定时间单位,则假定为微秒。

86.2 重做日志(MOT)

  • enable_group_commit = false

    是否使用组提交。

    该选项仅在openGauss配置为使用同步提交时相关,即仅当postgresql.conf中的synchronization_commit设置为除off以外的任何值时相关。

    有关WAL重做日志的详细信息,请参阅MOT日志记录:WAL重做日志

  • group_commit_size = 16

  • group_commit_timeout = 10 ms

    只有当MOT引擎配置为同步组提交日志记录时,此选项才相关。即postgresql.conf中的synchronization_commit配置为true,mot.conf配置文件中的enable_group_commit配置为true。

    当一组事务记录在WAL重做日志中时,需确定以下设置项取值:

    group_commit_size:一组已提交的事务数。例如,16表示当同一组中的16个事务已由它们的客户端应用程序提交时,则针对16个事务中的每个事务,在磁盘的WAL重做日志中写入一个条目。

    group_commit_timeout:超时时间,单位为毫秒。例如,10表示在10毫秒之后,为同一组由客户端应用程序在最近10毫秒内提交的每个事务,在磁盘的WAL重做日志中写入一个条目。

    提交组在到达配置的事务数后或者在超时后关闭。组关闭后,组中的所有事务等待一个组落盘完成执行,然后通知客户端每个事务都已经结束。

    img说明: 有关同步组提交日志记录的详细信息,请参阅MOT日志类型

86.3 检查点(MOT)

  • checkpoint_dir =

    指定检查点数据存放目录。默认位置在每个数据节点的data文件夹中。

  • checkpoint_segsize = 16 MB

    指定检查点时使用的段大小。分段执行检查点。当一个段已满时,它将被序列化到磁盘,并为后续的检查点数据打开一个新的段。

  • checkpoint_workers = 3

    指定在检查点期间要使用的工作线程数。

    检查点由多个MOT引擎工作线程并行执行。工作线程的数量可能会大大影响整个检查点操作的整体性能,以及其它正在运行的事务的操作。为了实现较短的检查点持续时间,应使用更多线程,直至达到最佳数量(根据硬件和工作负载的不同而不同)。但请注意,如果这个数目太大,可能会对其他正在运行的事务的执行时间产生负面影响。尽可能低这个数字,以最小化对其他运行事务的运行时的影响。当此数目过高时,检查点持续时间会较长。

img 说明: 有关配置的更多信息,请参阅MOT检查点

86.4 恢复(MOT)

  • checkpoint_recovery_workers = 3

    指定在检查点数据恢复期间要使用的工作线程数。每个MOT引擎工作线程在自己的核上运行,通过将不同的表读入内存,可以并行处理不同的表。缺省值为3,可将此参数设置为可处理的核数。恢复后,将停止并杀死这些线程。

img 说明: 有关配置的详细信息,请参阅MOT恢复

  • parallel_recovery_workers = 5 指定在重做恢复/回放期间使用的工作线程数。
  • parallel_recovery_workers = 5 指定恢复期间用于保存重做日志段的队列大小。此参数还限制并行恢复期间处于活动状态(进行中)的最大事务数。如果达到此限制,重做回放将等待某些事务提交,然后再处理新事务的重做日志。

86.5 统计(MOT)

  • enable_stats = false

    设置周期性统计打印信息。

  • print_stats_period = 10 minute

    设置汇总统计报表打印的时间范围。

  • print_full_stats_period = 1 hours

    设置全量统计报表打印的时间范围。

    以下设置为周期性统计报表中的各个部分。如果没有配置,则抑制统计报表。

  • enable_log_recovery_stats = false

    日志恢复统计信息包含各种重做日志的恢复指标。

  • enable_db_session_stats = false

    数据库会话统计信息包含事务事件,如提交、回滚等。

  • enable_network_stats = false

    网络统计信息包括连接/断连事件。

  • enable_log_stats = false

    日志统计信息包含重做日志详情。

  • enable_memory_stats = false

    内存统计信息包含内存层详情。

  • enable_process_stats = false

    进程统计信息包含当前进程的内存和CPU消耗总量。

  • enable_system_stats = false

    系统统计信息包含整个系统的内存和CPU消耗总量。

  • enable_jit_stats = false

    JIT统计信息包含有关JIT查询编译和执行的信息。

86.6 错误日志(MOT)

  • log_level = INFO

    设置MOT引擎下发的消息在数据库服务器的错误日志中记录的日志级别。有效值为PANIC、ERROR、WARN、INFO、TRACE、DEBUG、DIAG1、DIAG2。

  • Log/COMPONENT/LOGGER=LOG_LEVEL

    使用以下语法设置特定的日志记录器。

    例如,要为系统组件中的ThreadIdPool日志记录器配置TRACE日志级别,请使用以下语法:

    Log.System.ThreadIdPool.log_level=TRACE
    

    要为某个组件下的所有记录器配置日志级别,请使用以下语法:

    Log.COMPONENT.log_level=LOG_LEVEL
    

    例如:

    Log.System.log_level=DEBUG
    

86.7 内存(MOT)

  • enable_numa = true

    指定是否使用可识别NUMA的内存。禁用时,所有亲和性配置也将被禁用。MOT引擎假定所有可用的NUMA节点都有内存。如果计算机具有某些特殊配置,其中某些NUMA节点没有内存,则MOT引擎初始化将因此失败,因此数据库服务器启动将失败。在此类计算机中,建议将此配置值设置为false,以防止启动失败并让MOT引擎在不使用可识别NUMA的内存分配的情况下正常运行。

  • affinity_mode = equal-per-socket

    设置用户会话和内部MOT任务的线程亲和模式。

    使用线程池时,用户会话将忽略此值,因为它们的亲和性由线程池控制。但内部MOT任务仍然使用。

    有效值为fill-socket-first、equal-per-socket、fill-physical-first、none。

    • Fill-socket-first将线程连接到同一个槽位的核上,直到槽位已满,然后移动到下一个槽位。
    • Equal-per-socket使线程均匀分布在所有槽位中。
    • Fill-physical-first将线程连接到同一个槽位中的物理核,直到用尽所有物理核,然后移动到下一个槽位。当所有物理核用尽时,该过程再次从超线程核开始。
    • None禁用任何亲和配置,并让系统调度程序确定每个线程调度在哪个核上运行。
  • lazy_load_chunk_directory = true

    设置块目录模式,用于内存块查找。

    Lazy模式将块目录设置为按需加载部分目录,从而减少初始内存占用(大约从1GB减少到1MB)。然而,这可能会导致轻微的性能损失和极端情况下的内存损坏。相反,使用non-lazy块目录会额外分配1GB的初始内存,产生略高的性能,并确保在内存损坏期间避免块目录错误。

  • reserve_memory_mode = virtual

    设置内存预留模式(取值为physical或virtual)。

    每当从内核分配内存时,都会参考此配置值来确定所分配的内存是常驻(physical)还是非常驻(virtual)。这主要与预分配有关,但也可能影响运行时分配。对于physical保留模式,通过强制内存区域所跨越的所有页出现页错误,使整个分配的内存区域常驻。配置virtual内存预留可加速内存分配(特别是在预分配期间),但可能在初始访问期间出现页错误(因此导致轻微的性能影响),并在物理内存不可用时出现更多服务器错误。相反,物理内存分配速度较慢,但后续访问速度更快且有保障。

  • store_memory_policy = compact

    设置内存存储策略(取值为compact或expanding)。

    当定义了compact策略时,未使用的内存会释放回内核,直到达到内存下限(请参见下面的min_mot_memory)。在expanding策略中,未使用的内存存储在MOT引擎中,以便后续再使用。compact存储策略可以减少MOT引擎的内存占用,但偶尔会导致性能轻微下降。此外,在内存损坏时,它还可能导致内存不可用。相反,expanding模式会占用更多的内存,但是会更快地分配内存,并且能够更好地保证在解分配后能够重新分配内存。

  • chunk_alloc_policy = auto

    设置全局内存的块分配策略。

    MOT内存以2MB的块为单位组织。源NUMA节点和每个块的内存布局会影响表数据在NUMA节点间的分布,因此对数据访问时间有很大影响。在特定NUMA节点上分配块时,会参考分配策略。

    可用值包括auto、local、page-interleaved、chunk-interleaved、native。

    • Auto策略根据当前硬件情况选择块分配策略。
    • Local策略在各自的NUMA节点上分配每个数据块。
    • Page-interleaved策略从所有NUMA节点分配由交插内存4千字节页组成的数据块。
    • Chunk-interleaved策略以轮循调度方式从所有NUMA节点分配数据块。
    • Native策略通过调用原生系统内存分配器来分配块。
  • chunk_prealloc_worker_count = 8

    设置每个NUMA节点参与内存预分配的工作线程数。

  • max_mot_global_memory = 80%

    设置MOT引擎全局内存的最大限制。

    指定百分比值与postgresql.conf中max_process_memory定义的总量有关。

    MOT引擎内存分为全局(长期)内存,主要用于存储用户数据,以及本地(短期)内存,主要用于用户会话,以满足本地需求。

    任何试图分配超出此限制的内存的尝试将被拒绝,并向用户报告错误。请确保max_mot_global_memory与max_mot_local_memory之和不超过postgresql.conf中配置的max_process_memory。

  • min_mot_global_memory = 0 MB

    设置MOT引擎全局内存的最小限制。

    指定百分比值与postgresql.conf中max_process_memory定义的总量有关。

    此值用于启动期间的内存预分配,以及确保MOT引擎在正常运行期间有最小的内存可用量。当使用compact存储策略时(参阅上文store_memory_policy),该值指定了下限,超过下限的内存不会释放回内核,而是保留在MOT引擎中以便后续重用。

  • max_mot_local_memory = 15%

    设置MOT引擎本地内存的最大限制。

    指定百分比值与postgresql.conf中max_process_memory定义的总量有关。

    MOT引擎内存分为全局(长期)内存,主要用于存储用户数据,以及本地(短期)内存,主要用于用户会话,以满足本地需求。

    任何试图分配超出此限制的内存的尝试将被拒绝,并向用户报告错误。请确保max_mot_global_memory与max_mot_local_memory之和不超过postgresql.conf中配置的max_process_memory。

  • min_mot_local_memory = 0 MB

    设置MOT引擎本地内存的最小限制。

    指定百分比值与postgresql.conf中max_process_memory定义的总量有关。

    此值用于在启动期间预分配内存,以及确保MOT引擎在正常运行期间有最小的可用内存。当使用compact存储策略时(参阅上文store_memory_policy),该值指定了下限,超过下限的内存不会释放回内核,而是保留在MOT引擎中以便后续重用。

  • max_mot_session_memory = 0 MB

    设置MOT引擎中单个会话的最大内存限制。

    指定百分比值与postgresql.conf中max_process_memory定义的总量有关。

    通常,MOT引擎中的会话可以根据需要分配尽可能多的本地内存,只要没有超出本地内存限制即可。为了避免单个会话占用过多的内存,从而拒绝其他会话的内存,通过该配置项限制小会话的本地内存分配(最大1022KB)。

    请确保该配置项不影响大会话的本地内存分配。

    0表示不会限制每个小会话的本地分配,除非是由max_mot_local_memory配置的本地内存分配限制引起的。

  • min_mot_session_memory = 0 MB

    设置MOT引擎中单个会话的最小内存预留。

    指定百分比值与postgresql.conf中max_process_memory定义的总量有关。

    此值用于在会话创建期间预分配内存,以及确保会话有最小的可用内存量来执行其正常操作。

  • session_large_buffer_store_size = 0 MB

    设置会话的大缓冲区存储。

    当用户会话执行需要大量内存的查询时(例如,使用许多行),大缓冲区存储用于增加此类内存可用的确定级别,并更快地为这个内存请求提供服务。对于超过1022KB的会话,任何内存分配都是大内存分配。如果未使用或耗尽了大缓冲区存储,则这些分配将被视为直接从内核提供的巨大分配。

  • session_large_buffer_store_max_object_size = 0 MB

    设置会话的大分配缓冲区存储中的最大对象大小。

    大缓冲区存储内部被划分为不同大小的对象。此值用于对源自大缓冲区存储的对象设置上限,以及确定缓冲区存储内部划分为不同大小的对象。

    此大小不能超过session_large_buffer_store_size的1/8。如果超过,则将其调整到最大可能。

  • session_max_huge_object_size = 1 GB

    设置会话单个大内存分配的最大尺寸。

    巨大分配直接从内核中提供,因此不能保证成功。

    此值也适用于全局(非会话相关)内存分配。

86.8 垃圾收集(MOT)

  • reclaim_threshold = 512 KB

    设置垃圾收集器的内存阈值。

    每个会话管理自己的待回收对象列表,并在事务提交时执行自己的垃圾回收。此值决定了等待回收的对象的总内存阈值,超过该阈值,会话将触发垃圾回收。

    一般来说,这里是在权衡未回收对象与垃圾收集频率。设置低值会使未回收的内存保持在较少的水平,但会导致频繁的垃圾回收,从而影响性能。设置高值可以减少触发垃圾回收的频率,但会导致未回收的内存过多。此设置取决于整体工作负载。

  • reclaim_batch_size = 8000

    设置垃圾回收的批次大小。

    垃圾收集器从对象中批量回收内存,以便限制在一次垃圾收集传递中回收的对象数量。此目的是最小化单个垃圾收集传递的操作时间。

  • high_reclaim_threshold = 8 MB

    设置垃圾回收的高内存阈值。

    由于垃圾收集是批量工作的,因此会话可能有许多可以回收的对象,但这些对象不能回收。在这种情况下,为了防止垃圾收集列表变得过于膨胀,尽管已经达到批处理大小限制,此值继续单独回收对象,直到待回收对象小于该阈值,或者没有更多符合回收条件的对象。

86.9 JIT(MOT)

  • enable_mot_codegen = false

    指定是否对计划查询使用JIT查询编译和执行。

    JIT查询执行为在计划阶段准备好的查询准备了JIT编译的代码。每当调用准备好的查询时,都会执行生成的JIT编译函数。JIT编译通常以LLVM的形式进行。

  • enable_mot_codegen_print = false

    是否为JIT编译的查询打印发出的LLVM代码。

  • mot_codegen_limit = 50000

    限制每个用户会话允许的JIT查询数量。

  • enable_mot_query_codegen = true

    计划查询是否使用JIT查询编译和执行。JIT查询执行允许在规划阶段为预处理查询提供即时编译代码。每当调用预处理查询时,就会执行生成的JIT编译函数。JIT编译以LLVM的形式进行。

  • enable_mot_sp_codegen = true

    存储过程是否使用JIT查询编译和执行。JIT查询执行允许在编译阶段为存储过程提供即时编译代码。每当调用存储过程时,就会执行生成的JIT编译函数。

  • enable_mot_codegen_profile = true

    是否使用JIT分析。使用此选项时,mot_jit_profile()函数可用于获取JIT存储过程和查询的运行时配置数据。

86.10 默认MOT.conf文件

最小设置和配置指定将postgresql.conf文件指向MOT.conf文件的位置:

postgresql.conf  
mot_config_file = '/tmp/gauss/ MOT.conf'

确保max_process_memory设置的值足够包含MOT的全局(数据和索引)和本地(会话)内存。

MOT.conf的默认内容满足开始使用的需求。设置内容后续可以优化。

👍 点赞,你的认可是我创作的动力!

⭐️ 收藏,你的青睐是我努力的方向!

✏️ 评论,你的意见是我进步的财富!

image-20230625180252706

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/92312.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

进入IT行业:选择前端开发还是后端开发?

一、前言 开发做前端好还是后端好?这是一个常见的问题,特别是对于初学者来说。在编程世界中,前端开发和后端开发分别代表着用户界面和数据逻辑,就像城市的两个不同街区一样。但是,究竟哪个街区更适合我们作为开发者呢…

Mapfree智驾方案,怎样实现成本可控?

整理|睿思 编辑|祥威 编者注:本文是HiEV出品的系列直播「智驾地图之变」第二期问答环节内容整理。 元戎启行副总裁刘轩与连线嘉宾奥维咨询董事合伙人张君毅、北汽研究总院智能网联中心专业总师林大洋、主持嘉宾周琳展开深度交流,并进行了答疑。 本期元…

【算法|贪心算法系列No.3】leetcode334. 递增的三元子序列

个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望…

oracle分组合并数值带顺序

比如:有如下一张设备电子围栏位置坐标的表(tb_equ_point)。 equ_name:设备电子围栏名称 point_id:点位坐标id point_x:点位x坐标 point_y:点位y坐标。 附数据: INSERT INTO "tb_equ_point" ("EQU_NAME",…

番外3:下载+安装VMware(前期准备)

step1: 查看自己笔记本电脑配置; step2: 下载并安装VMware(下载地址www..kkx.net/soft/16841.html)这里选择本地普通下载; step3: 安装VMware过程中需要填写密钥(本人用的最后一个); #UU54R-FVD91-488PP-7N…

友思特案例|友思特 Ensenso 3D相机:汽车工业自动化的革命性力量

01 内容摘要 在竞争激烈的汽车行业,自动化生产至关重要。友思特 Ensenso 3D相机为汽车制造商提供了可靠的工具和技术支持,助力多个关键环节。它在汽车座位泡棉切割中提高精确度,降低浪费,提高生产效率;在汽车压铸零部…

<泛型>带你更详细的认识泛型

了解泛型 现在有一个需求:写一个打印类,用来打印不同类型的数据 //类1 :打印Integer类型的数据 public class IntegerPrint {Integer content;public void Integer(Integer content) {this.content content;}public void print(){System.o…

Python3数据科学包系列(二):数据分析实战

Python3中类的高级语法及实战 Python3(基础|高级)语法实战(|多线程|多进程|线程池|进程池技术)|多线程安全问题解决方案 Python3数据科学包系列(一):数据分析实战 Python3数据科学包系列(二):数据分析实战 一:通过read_table函数读取数据创建(DataFrame)数据框 #…

九、GC收集日志

JVM由浅入深系列一、关于Java性能的误解二、Java性能概述三、了解JVM概述四、探索JVM架构五、垃圾收集基础六、HotSpot中的垃圾收集七、垃圾收集中级八、垃圾收集高级👋GC收集日志 ⚽️1. 认识GC收集日志 垃圾收集日志是一个重要的信息来源,对于与性能相关的一些悬而未决的…

1.5.C++项目:仿muduo库实现并发服务器之socket模块的设计

项目完整版在: 一、socket模块:套接字模块 二、提供的功能 Socket模块是对套接字操作封装的一个模块,主要实现的socket的各项操作。 socket 模块:套接字的功能 创建套接字 绑定地址信息 开始监听 向服务器发起连接 获取新连接 …

uni-app:实现页面效果3

效果 代码 <template><view><!-- 风速风向检测器--><view class"content_position"><view class"content"><view class"SN"><view class"SN_title">设备1</view><view class&quo…

2023.9.23 关于 HTTP 详解

目录 HTTP 协议 认识 URL HTTP 请求 认识方法 HTTP 响应 认识状态码 总结 HTTP 请求的构造 Form 表单构造 AJAX 构造 Postman 构造 HTTP 协议 应用层使用最广泛的协议浏览器 基于 HTTP协议 获取网站是 浏览器 和 服务器 之间的交互桥梁HTTP协议 基于传输层的 TCP协…

计算机竞赛 深度学习火车票识别系统

文章目录 0 前言1 课题意义课题难点&#xff1a; 2 实现方法2.1 图像预处理2.2 字符分割2.3 字符识别部分实现代码 3 实现效果4 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 图像识别 火车票识别系统 该项目较为新颖&#xff0c;适…

下载盗版网站视频并将.ts视频文件合并

. 1.分析视频请求123 2.数据获取和拼接 1.分析视频请求 1 通过抓包观察我们发现视频是由.ts文件拼接成的每一个.ts文件代表一小段2 通过观察0.ts和1.ts的url我们发现他们只有最后一段不同我们网上找到url获取的包3 我们发现index.m3u8中储存着所有的.ts文件名在拼接上前面固定…

【深度学习实验】卷积神经网络(三):自定义二维卷积层:步长、填充、输入输出通道

目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 三、实验内容 0. 导入必要的工具包 1. 步长、填充 a. 二维互相关运算&#xff08;corr2d&#xff09; b. 二维卷积层类&#xff08;Conv2D&#xff09; c. 模型测试 d. 代码整合 2. 输入输出通道 a…

mysql的mvcc详解

一 MVCC的作用 1.1 mvcc的作用 1.MVCC&#xff08;Multiversion Concurrency Control&#xff09;多版本并发控制。即通过数据行的多个版本管理来实现数据库的并发控制&#xff0c;使得在InnoDB事务隔离级别下执行一致性读操作有了保障。 2.mysql中的InnoDB中实现了MVCC主要…

前端面试:01.图中输入什么?

~~~~~~~~~~~~~ 先自行想一想&#xff0c;答案在~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ 先自行想一想&#xff0c;答案在~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ 先自行想一想&#xff0c;答案在~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ 先自行想一想&#xff0c;答案在~~~~~~~~~~~~~~~~~ ~~~~~~~~…

ciscn_2019_s_9

ciscn_2019_s_9 Arch: i386-32-little RELRO: Partial RELRO Stack: No canary found NX: NX disabled PIE: No PIE (0x8048000) RWX: Has RWX segments32位&#xff0c;啥也没开&#xff0c;开心愉悦写shellcode int pwn() {char s[24]; // [esp8…

智能回答机器人的“智能”体现在哪里?

人工智能的广泛应用已经成为当今社会科技发展的趋势之一。通过人工智能技术&#xff0c;我们可以在不同领域中实现自动化、智能化和高效化&#xff0c;从而大大提升生产和生活效率。智能回答机器人的出现和使用便能很好的证明这一点。今天我们就来探讨一下智能会打机器人的“智…

python爬取百度图片

1.查询数据 打开网页。 https://cn.bing.com/images/search?q%E7%99%BE%E5%BA%A6%E5%9B%BE%E7%89%87&formHDRSC2&first1&cw1585&ch924 我们右键查看网页源代码,发现能找到我们需要的img衔接,但是这是一个动态网页。我们每次向下滑动网页&#xff0c;会发现图…