OpenCV实现模板匹配和霍夫线检测,霍夫圆检测

一,模板匹配

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.1代码实现

import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt
from pylab import mplmpl.rcParams['font.sans-serif'] = ['SimHei']#图像和模板的读取
img = cv.imread("cat.png")
template = cv.imread(r"E:\All_in\opencv\cat_1.png")
h,w,l = template.shape   #template.shape 返回模板图像的高度、宽度和通道数。#模板匹配
res = cv.matchTemplate(img,template,cv.TM_CCORR)   #cv.TM_CCORR 是匹配方法,表示使用相关系数进行匹配。#返回图像中最匹配的位置,确定左上角的坐标,并将匹配位置绘制在图像上
min_val,max_val,min_loc,max_loc = cv.minMaxLoc(res)    #cv.minMaxLoc 函数返回匹配结果矩阵中的最小值、最大值及其对应的位置。在这里,我们只关心最大值和其对应的位置。#使用平方差时最小值为最佳匹配位置
#top_left = min_loc
"""确定最佳匹配位置的左上角坐标(top_left)和
右下角坐标(bottom_right),并在图像上绘制矩形框来表示匹配位置:"""
top_left = max_loc
bottom_right = (top_left[0] + w,top_left[1] + h)
cv.rectangle(img , top_left,bottom_right,(0,255,0),5)
"""top_left 和 bottom_right 分别是矩形框的左上角和右下角坐标,
(0, 255, 0) 是矩形框的颜色,(0, 255, 0) 表示绿色,2 是矩形框的线宽。"""#图像显示
plt.imshow(img[:,:,::-1])
plt.title('匹配结果'),plt.xticks([]),plt.yticks([])
plt.show()

1.2效果展示

在这里插入图片描述

二,霍夫线变换

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.1代码实现

import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
from pylab import mplmpl.rcParams['font.sans-serif'] = ['SimHei']#加载图片,转为二值图
img = cv.imread("line.png")gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
edges = cv.Canny(gray,50,150)
'''
50 和 150:Canny 边缘检测的阈值参数。这两个参数用于控制边缘的检测灵敏度
使用 cv.cvtColor() 函数将图像从 BGR 格式转换为灰度图像,并将结果存储在变量 gray 中。
再利用 cv.Canny() 函数对灰度图像进行边缘检测,得到边缘图像并将其存储在变量 edges 中
'''#霍夫直线变换
lines = cv.HoughLines(edges,0.8,np.pi / 180,150)
'''0.8:距离精度 rho 的值,表示极坐标距离 rho 的最小步长。
np.pi / 180:角度精度 theta 的值,表示极坐标角度 theta 的最小步长。
150:阈值,表示在霍夫空间中检测直线时所需的最低投票数。投票数高于阈值的直线将被认为是有效的直线。
'''#将检测的线绘制在图像上(极坐标)
for line in lines:rho,theta = line[00]a = np.cos(theta)b = np.sin(theta)x0 = a * rhoy0 = b * rhox1 = int(x0  + 1000 * (-b))y1 = int(y0 + 1000 * (a))x2 = int(x0 - 1000 * (-b))y2 = int(y0 - 1000 *(a))cv.line(img , (x1,y1),(x2,y2),(0,255,0))
'''遍历检测到的直线参数列表 lines。对于每条直线,首先获取直线的极坐标参数 rho 和 theta。
然后,根据极坐标中的角度 theta 计算出直线的斜率参数 a 和 b。
再根据极坐标中的距离 rho 计算出直线上的一对坐标 (x0, y0)。
接下来,利用斜率和距离计算直线上另外两个点的坐标 (x1, y1) 和 (x2, y2)。
最后,使用 cv.line() 函数在原始图像 img 上绘制检测到的直线,线段颜色为绿色。
'''
#图像显示
plt.figure(figsize=(5,4),dpi=100)
plt.imshow(img[:,:,::-1]),plt.title("霍夫变换线检测")
plt.xticks([]),plt.yticks([])
plt.show()

2.2结果展示

在这里插入图片描述

三,霍夫圆检测

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.1代码实现

import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
from pylab import mplmpl.rcParams['font.sans-serif'] = ['SimHei']#读取图像转化为灰度图
planets = cv.imread("circle.png")
gray_img = cv.cvtColor(planets,cv.COLOR_BGR2GRAY)#进行模糊去噪点
img = cv.medianBlur(gray_img,7)#霍夫圆检测
circles = cv.HoughCircles(img , cv.HOUGH_GRADIENT,1,200,param1=100,param2=30,minRadius=0,maxRadius=100)# 判断是否成功找到圆
if circles is not None:# 将结果显示在图像上for i in circles[0, :]:cv.circle(planets, (i[0], i[1]), i[2], (0, 255, 0), 2)  # 绘制圆形cv.circle(planets, (i[0], i[1]), 2, (0, 0, 255), 3)  # 绘制圆心# 图像显示plt.figure(figsize=(5, 4), dpi=100)plt.imshow(planets[:, :, ::-1])plt.title("霍夫圆检测")plt.xticks([])plt.yticks([])plt.show()
else:print("未检测到圆")

3.2结果展示

!](https://img-blog.csdnimg.cn/86bcfb4ac7f54fd79008e29f91094372.png)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/91112.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【vue3】项目搭建

目录 简介脚手架引入axios引入sass引入element-plusvite.config.js路由配置全局状态管理完整main.js组合式API之Setup 简介 vue3:双向绑定改为ES6的Proxy;新的API风格,代码逻辑性更强、更易维护;性能提升,渲染更快、内…

JavaScript:立即执行函数

一、JS立即执行函数模式是一种语法,可以让你的函数在定义后立即被执行,这种模式本质上就是函数表达式(命名的或者匿名的),在创建后立即执行。 两种常见写法: 匿名函数包裹在一个括号运算符中,…

【数据库系统概论】关系数据库中的关系完整性

前言实体完整性参照完整性用户定义的完整性SQL Server中常用的完整性约束感谢 💖 前言 按照数据模型的三大要素,关系模型由关系数据结构、关系操作集合和关系完整性约束三部分组成。本篇文章将介绍这三部分内容中的第三部分即关系完整性。关于前两部分可…

Linux嵌入式串口UART测试程序

Linux串口UART测试程序&#xff0c;收到什么&#xff0c;打印什么。 #include<stdio.h> #include<stdlib.h> #include<unistd.h> #include<sys/types.h> #include<sys/stat.h> #include<sys/signal.h> #include<fcntl.h> #include&l…

uniapp js 合成canvas画布

代码 <template><view><canvas canvas-id"canvas" class"canvas-c"></canvas><!-- <h1>999</h1> --></view> </template><script>export default {name: sharePos,props: {// 绘制图片的尺寸…

配置OSPF路由

OSPF路由 1.OSPF路由 1.1 OSPF简介 OSPF(Open Shortest Path First&#xff0c;开放式最短路径优先&#xff09;路由协议是另一个比较常用的路由协议之一&#xff0c;它通过路由器之间通告网络接口的状态&#xff0c;使用最短路径算法建立路由表。在生成路由表时&#xff0c;…

亚马逊无线鼠标FCC认证办理 FCC ID

无线鼠标是指无线缆直接连接到主机的鼠标&#xff0c;采用无线技术与计算机通信&#xff0c;从而省却电线的束缚。通常采用无线通信方式&#xff0c;包括蓝牙、Wi-Fi (IEEE 802.11)、Infrared (IrDA)、ZigBee (IEEE 802.15.4)等多个无线技术标准。随着人们对办公环境和操作便捷…

RSS订阅

RSS订阅是一种内容聚合的工具&#xff0c;它可以帮助你聚合、分类、整理日常大量信息。以下是使用RSS订阅的一些好处&#xff1a; 获取更新信息&#xff1a;当你订阅了某个网站或者主题&#xff0c;每当有新的内容更新&#xff0c;你都会第一时间收到通知。提高阅读效率&#…

如何有效的进行服务器稳定性测试?

服务器稳定性是最重要的&#xff0c;如果在稳定性方面不能够保证业务运行的需要&#xff0c;再高的性能也是无用的。 正规的服务器厂商都会对产品进行不同温度和湿度下的运行稳定性测试。重点要考虑的是冗余功能&#xff0c;如&#xff1a;数据冗余、网卡冗余、电源冗余、风扇冗…

Vue中动态树形菜单,以及

&#x1f3c5;我是默&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;在这里&#xff0c;我要推荐给大家我的专栏《Vue》。&#x1f3af;&#x1f3af; &#x1f680;无论你是编程小白&#xff0c;还是有一定基础的程序员&#xff0c;这个专栏…

Leetcode205. 同构字符串

力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 给定两个字符串 s 和 t &#xff0c;判断它们是否是同构的。 如果 s 中的字符可以按某种映射关系替换得到 t &#xff0c;那么这两个字符串是同构的。 每个出现的字符都应当映射到另一个字符&#xff0…

CTP:关于cc和bindgen库及rust工程组织

有三个工程目录&#xff0c;cpt-api, ctp-sdk,ctp-strategy 1、ctp-sdk&#xff1a; 主要的目的是基于bindgen库生成与cpp的.h文件相对应一个binding.rs文件&#xff0c;后面供策略使用。 在这个目录下&#xff0c;建一个build.rs,用bindgen库生成cpp.h的头文件相应的rust绑定…

蓝桥杯每日一题2023.9.29

蓝桥杯大赛历届真题 - C&C 大学 B 组 - 蓝桥云课 (lanqiao.cn) 题目描述1 题目分析 看见有32位&#xff0c;我们以此为入手点&#xff0c; B代表字节1B 8b b代表位&#xff0c;32位即4个字节 (B) 1KB 1024B 1MB 1024KB (256 * 1024 * 1024) / 4 67108864 故答案…

redis主从从,redis-7.0.13

redis主从从&#xff0c;redis-7.0.13 下载redis安装redis安装redis-7.0.13过程报错1、没有gcc&#xff0c;报错2、没有python3&#xff0c;报错3、[adlist.o] 错误 127 解决安装报错安装完成 部署redis 主从从结构redis主服务器配置redis启动redis登录redisredis默认是主 redi…

[JAVA]黑马程序员文字打斗游戏复现

author:&Carlton language:JAVA website: b站黑马程序员 黑马程序员 JAVA 2022斯坦福大学合集面向对象程序设计练习题 目录 Role类 RoleTest类 Role类 package com.itheima.demo2;import java.util.Random;public class Role {private String name;private String fac…

Flutter笔记:用于ORM的Floor框架简记

Flutter笔记 用于ORM的Floor框架简记 本文地址&#xff1a;https://blog.csdn.net/qq_28550263/article/details/133377191 floor 模块地址&#xff1a;https://pub.dev/packages/floor 【介绍】&#xff1a;最近想找用于Dart和Flutter的ORM框架&#xff0c;偶然间发现了Floor…

Oracle的递归公共表表达式

查询节点id为2的所有子节点的数据&#xff0c;包括向下级联 WITH T1 (id, parent_id, data) AS (SELECT id, parent_id, dataFROM nodesWHERE id 2UNION ALLSELECT t.id, t.parent_id, t.dataFROM nodes tJOIN T1 n ON t.parent_id n.id ) SELECT * FROM T1; --建表语句 C…

什么是Times New Roman 字体

如何评价 Times New Roman 字体&#xff1f;&#xff1a;https://www.zhihu.com/question/24614549?sortcreated 新罗马字体是Times New Roman字体&#xff0c;是Office Word默认自带的英文字体之一。 中英文字体 写作中&#xff0c;英文和数字的标准字体为 Times New Roma…

目标检测YOLO实战应用案例100讲-雾天场景下低能见度图像 目标检测(中)

目录 2.3.3 损失函数与训练方法 2.4 实验与结果分析 2.4.1 改造骨干网络实验分析

华为云云耀云服务器L实例评测 | 实例使用教学之软件安装:华为云云耀云服务器环境下安装 Docker

华为云云耀云服务器L实例评测 &#xff5c; 实例使用教学之软件安装&#xff1a;华为云云耀云服务器环境下安装 Docker 介绍华为云云耀云服务器 华为云云耀云服务器 &#xff08;目前已经全新升级为 华为云云耀云服务器L实例&#xff09; 华为云云耀云服务器是什么华为云云耀云…