【深度学习】分类问题探究(多标签分类转为多个二分类,等)

【深度学习】分类问题探究(多标签分类转为多个二分类,等)

文章目录

  • 【深度学习】分类问题探究(多标签分类转为多个二分类,等)
    • 1. 介绍
    • 2. 一些解析
      • 2.1 关于多标签分类 to 多个二分类
    • 2.2 continue

1. 介绍

在机器学习和深度学习中,分类问题有多种类型。以下列举了一些常见的分类类型,并提供了相应的例子:

  • 二分类(Binary classification):将样本分为两个互斥的类别。例如,垃圾邮件分类器可以将电子邮件分为垃圾邮件和非垃圾邮件两类。
  • 多分类(Multiclass classification):将样本分为多个互斥的类别。例如,手写数字识别可以将手写数字图像分为0到9的十个类别。
  • 多标签分类(Multilabel classification):针对每个样本,可以同时分配多个标签。例如,图像标签分类可以将一张图像分为多个标签,如“汽车”、“树木”和“天空”。
  • 层次分类(Hierarchical classification):将样本根据层次结构分为多个类别。这些类别之间存在嵌套关系,形成树状结构。例如,生物学中的分类系统就是一个层次分类的例子,从一级分类到更具体的分类。
  • 基于规则的分类(Rule-based classification):使用一组规则来进行分类。规则可以基于特征值的阈值、逻辑判断等条件。例如,根据天气条件和交通状况,制定交通工具选择的规则。
  • 序列分类(Sequence classification):对序列数据进行分类,根据输入序列的特征将其分为不同的类别。例如,语音识别中的说话人识别可以将输入的语音序列归属于不同的人。
  • 异常检测(Anomaly detection):识别在数据集中与大多数样本不同的异常样本。例如,在网络入侵检测中,识别可能是攻击的网络流量。

这些是分类问题中的一些常见类型,每种类型都有其独特的特点和应用场景。选择适当的分类类型取决于具体的问题和数据集。最典型的当属前三个。

2. 一些解析

2.1 关于多标签分类 to 多个二分类

多分类问题都能转化为多个二分类问题。二分类模型相比于多分类模型,识别准确率会提升(类别越多,错误识别的概率会越高),但是将多分类转化为二分类,模型的复杂度会变高,如果对识别准确率要求非常高,可以采用多个二分类进行识别,如果准确率要求不是那么高,采用多分类模型即可。因此,可以根据具体场景来进行选择,将多分类转化为多个二分类。

多标签分类可以转化为多个二分类任务,每个二分类任务对应一个标签。效果的好坏取决于具体的问题和数据集。

  • 将多标签分类转化为多个二分类任务的优点是,每个任务相对独立,可以使用不同的模型或算法来处理不同的标签。这样可以充分利用每个标签的特征和关联性,提高分类准确性。此外,由于每个任务都是二分类,可能更容易找到适合的模型和优化方法。
  • 然而,将多标签分类转化为多个二分类任务也存在一些挑战。首先,可能存在标签之间的相关性,单独对每个标签进行二分类可能无法充分考虑标签之间的关联。其次,如果某些标签类别不平衡,即其中一个类别样本数量较少时,二分类任务可能会面临样本不平衡的问题。此外,将问题转化为多个二分类任务会增加计算和存储开销。
  • 因此,选择哪种方法取决于具体的问题和数据集。有时,多标签分类本身的模型或算法可能已经能够取得很好的效果。在其他情况下,将多标签分类转化为多个二分类任务可能能够提供更好的性能。需要根据具体情况进行实验和评估,找到最适合的方法。
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset# 自定义数据集类
class MultiLabelDataset(Dataset):def __init__(self, X, y):self.X = torch.tensor(X, dtype=torch.float32)self.y = torch.tensor(y, dtype=torch.float32)def __len__(self):return len(self.X)def __getitem__(self, idx):return self.X[idx], self.y[idx]# 自定义模型类
class BinaryClassifier(nn.Module):def __init__(self, input_size):super(BinaryClassifier, self).__init__()self.fc = nn.Linear(input_size, 1)def forward(self, x):x = self.fc(x)return x# 训练函数
def train_model(model, train_loader, criterion, optimizer, num_epochs):model.train()for epoch in range(num_epochs):running_loss = 0.0for inputs, labels in train_loader:optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs.squeeze(), labels)loss.backward()optimizer.step()running_loss += loss.item()print(f"Epoch {epoch+1}/{num_epochs}, Loss: {running_loss / len(train_loader)}")# 测试函数
def test_model(model, test_loader, threshold=0.5):model.eval()with torch.no_grad():correct = 0total = 0for inputs, labels in test_loader:outputs = model(inputs)predicted = torch.sigmoid(outputs.squeeze()) > thresholdtotal += labels.size(0)correct += (predicted == labels).sum().item()print(f"Accuracy: {correct / total}")# 生成示例的多标签分类数据集
X, y = make_multilabel_classification(n_samples=100, n_features=10, n_labels=3, random_state=1)# 数据集划分为训练集和测试集
train_dataset = MultiLabelDataset(X[:80], y[:80])
test_dataset = MultiLabelDataset(X[80:], y[80:])# 创建数据加载器
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=16, shuffle=False)# 创建模型、损失函数和优化器
model = BinaryClassifier(input_size=10)
criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 训练并测试模型
train_model(model, train_loader, criterion, optimizer, num_epochs=10)
test_model(model, test_loader)

上述代码中,

  • 首先定义了一个自定义的数据集类MultiLabelDataset,用于加载数据。然后,定义了一个简单的二分类模型BinaryClassifier,该模型使用线性全连接层进行二分类任务。接下来,定义了训练函数train_model和测试函数test_model,用于训练和评估模型。
  • 在主程序中,使用make_multilabel_classification生成示例的多标签分类数据集。然后,将数据集划分为训练集和测试集,并创建对应的数据加载器。接着,创建模型、损失函数和优化器。最后,调用train_model进行模型训练,并调用test_model评估模型在测试集上的准确率。
  • 代码仅提供了一个简单的示例,实际使用时可能需要更复杂的模型和优化策略。另外,还可以根据具体情况进行超参数的调整以获得更好的效果。

2.2 continue

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/90931.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

有车型(CarModel),车厂(CarFactory),经销商(Distributor)三个表

用drf编写 1 有车型(CarModel),车厂(CarFactory),经销商(Distributor)三个表, 一个车厂可以生产多种车型,一个经销商可以出售多种车型,一个车型可以有多个经销商出售车型:车型名,车型…

FFmpeg视音频分离器----向雷神学习

雷神博客地址:https://blog.csdn.net/leixiaohua1020/article/details/39767055 本程序可以将封装格式中的视频码流数据和音频码流数据分离出来。 在该例子中, 将FLV的文件分离得到H.264视频码流文件和MP3 音频码流文件。 注意: 这个是简化版…

C/C++进程线程超详细详解

目录 前言 一、进程基础 1.进程概念 2.进程特征 3.进程状态(如图清晰可见) 4,进程的标识 实例代码如下: 5.进程的种类 实例shell脚本程序如下: 二、进程API 1.创建子进程 实例代码如下: 2.exec函数族 函数…

搭建自己的pypi服务器

要搭建自己的 PyPI 服务器,您可以使用 warehouse 项目,它是 PyPI 的开源实现。下面是一些基本步骤: 准备环境: 安装 Python安装 PostgreSQL 数据库 克隆 warehouse 项目: git clone https://github.com/pypa/wareh…

Socket网络编程练习题四:客户端上传文件(多线程版)

题目 想要服务器不停止,能接收很多客户上传的图片? 解决方案 可以使用循环或者多线程 但是循环不合理,最优解法是(循环多线程)改写 代码实战 客户端代码 package com.heima;import java.io.*; import java.net.S…

在Windows11上安装ubuntu虚拟机

一开始是参考了 VMware17虚拟机安装Ubuntu最新版本(Ubuntu22.04LTS)详细步骤 专栏的1和2来的。但是后面总是提示operating system not found,就参考vmware安装ubuntu时总是提示operating system not found,选择典型安装而不是专栏选择的自定义安装&#…

深度学习算法在工业视觉落地的思考

0.废话 距离上次的栈板识别的思考已经过去3个月,中间根据客户的需求和自己的思考,对软件又重新做了调整。但是整体上还是不满意。 0.1 老生常谈的工业视觉落地架构 对于软件架构,我实在没有太多的参考。没办法,公司根本不关心软…

Redis与Mybatis

作者在学习Redis整合时使用JDBC与Jedis,但是呢,现如今的环境下,Mybatis系列ORM框架是更受关注的方法,作者有一点点Mybatis基础,Mybatisplus几乎忘的差不多了,现对Redis整合Mybatis相关知识进行梳理&#xf…

使用华为eNSP组网试验⑵-通过端口地址进行静态路由

有了网络模拟器可以对很多网络应用场景进行模拟,既方便学习又有利于实际的网络实施。 之前因为没有用过,用过了才知道eNSP的好处。但是与思科模拟器不同,连接是自动连接,不能确定端口,比如使用指定的光纤端口或者RJ45的…

CSS详细基础(六)边框样式

本期是CSS基础的最后一篇~ 目录 一.border属性 二.边框属性复合写法 三.CSS修改表格标签 四.内边距属性 五.外边距属性 六.其他杂例 1.盒子元素水平居中 2.清除网页内外元素边距 3.外边距的合并与塌陷 4.padding不会撑大盒子的情况 七.综合案例——新浪导航栏仿真 …

在 msys2/mingw 下安装及编译 opencv

最简单就是直接安装 pacman -S mingw-w64-x86_64-opencv 以下记录一下编译的过程 1. 安装编译工具及第三方库 pacman -S --needed base-devel mingw-w64-x86_64-toolchain unzip gccpacman -S python mingw-w64-x86_64-python2 mingw-w64-x86_64-gtk3 mingw-w64-x86_64-…

QT按钮介绍

目录 按钮基类 QAbstractButton QPushButton QToolButton QRadioButton QCheckBox 按钮基类 QAbstractButton 这是按钮的基类,它是继承QWidget类 它可对当前的图标,标题等进行设置。 它有自己的一些信号与槽函数: /* 当按钮被激活时(即…

区块链(7):p2p去中心化之初始化websoket服务端

1 整个流程梳理 服务开启onStart()连接打开onOpen()处理接收到的消息onMesage()连接关闭onClose()异常处理onError()2 创建p2p实现类 package com.example.demo.service;import com.example.demo.entity.BlockChain; import org.java_websocket.WebSocket; import org.java_we…

Chrome(谷歌浏览器)如何关闭搜索栏历史记录

目录 问题描述解决方法插件解决(亲测有效)自带设置解决步骤首先打开 地址 输入:chrome://flags关闭浏览器,重新打开Chrome 发现 已经正常 问题描述 Chrome是大家熟知的浏览器,但是搜索栏的历史记录如何自己一条条的删…

asp.net core mvc 文件上传,下载,预览

//文件上传用到了IformFile接口 1.1文件上传视图 <form action"/stu/upload" method"post" enctype"multipart/form-data"><input type"file" name"img" /><input type"submit" value"上传&…

Flink-CDC——MySQL、SqlSqlServer、Oracle、达梦等数据库开启日志方法

目录 1. 前言 2. 数据源安装与配置 2.1 MySQL 2.1.1 安装 2.1.2 CDC 配置 2.2 Postgresql 2.2.1 安装 2.2.2 CDC 配置 2.3 Oracle 2.3.1 安装 2.3.2 CDC 配置 2.4 SQLServer 2.4.1 安装 2.4.2 CDC 配置 2.5达梦 2.4.1安装 2.4.2CDC配置 3. 验证 3.1 Flink版…

国庆day1

发送数据 #include<myhead.h>//消息结构体 typedef struct {long msgtype; //消息类型char data[1024]; //消息正文 }Msg_ds;#define SIZE sizeof(Msg_ds)-sizeof(long) //正文大小 int main(int argc, const char *argv[]) {//1、创建key值key_t ke…

Spring MVC 中的数据验证技术

一、前言 在Web开发中&#xff0c;数据验证是不可或缺的一部分。Spring MVC 框架提供了强大的数据验证支持&#xff0c;可以帮助我们轻松地对用户提交的数据进行验证。 二、实现 Spring MVC 使用 JSR-303 验证规范&#xff08;Hibernate Validator 是其参考实现&#xff09;…

Microsoft Office无法重装报错30015-44(3) 0-2031(17004)

1.问题描述 由于迁移文件夹导致Microsoft office软件无法使用&#xff0c;于是准备卸载重装&#xff0c;但是点击OfficeSetup.exe出现报错30015-44(3) 关闭后出现以下报错0-2031(17004) 2. 尝试的解决方式 重启后仍然无法解决问题 2.1 参考官网解决办法 手动从控制面板&…

利用ICG-NH2/Amine进行DNA标记1686147-55-6星戈瑞

ICG-NH2&#xff08;吲哚菁绿胺&#xff09;可以用于DNA标记&#xff0c;这种标记方法通常涉及到DNA上的胺基反应基团和ICG-NH2之间的化学反应。以下是一种常见的方法&#xff0c;用于利用ICG-NH2标记DNA分子&#xff1a; 步骤&#xff1a; 1.准备目标DNA&#xff1a;你需要准…