三角拓扑聚合优化器TTAO-Transformer-BiLSTM多变量回归预测(Maltab)

三角拓扑聚合优化器TTAO-Transformer-BiLSTM多变量回归预测(Maltab)

完整代码私信回复三角拓扑聚合优化器TTAO-Transformer-BiLSTM多变量回归预测(Maltab)

一、引言

1、研究背景和意义

在现代数据科学领域,时间序列预测一直是研究的热点和难点,尤其是在金融、气象、能源等领域,精确的多变量时间序列预测对于决策支持、风险评估等具有重要意义。随着人工智能技术的发展,深度学习模型如Transformer和BiLSTM在处理序列数据方面显示出了强大的能力。Transformer模型通过自注意力机制有效地捕捉数据中的长短期依赖关系,而BiLSTM模型通过其双向的循环结构,能够更好地理解序列数据的上下文信息。然而,这些模型在训练过程中仍然面临优化难题,如梯度消失、局部最优等问题,这些问题直接影响模型的预测性能和稳定性。

2、研究现状

目前,虽然Transformer和BiLSTM模型在单一任务上的应用已较为成熟,但将两者结合用于多变量回归预测的研究仍相对较少。此外,传统的优化器如SGD、Adam等在处理复杂模型时,往往难以达到理想的优化效果。近年来,三角拓扑聚合优化器(TTAO)因其独特的拓扑结构和高效的优化能力,在多个领域展示了优越的性能。TTAO优化器通过模拟三角形拓扑结构,实现了更高效的参数更新和更稳定的训练过程,从而提高了模型的预测精度和泛化能力。

3、本文工作

针对现有研究的不足,本文提出了一种新的预测模型——TTAO-Transformer-BiLSTM。该模型结合了Transformer编码器和BiLSTM层,利用TTAO优化器进行模型训练,以达到更好的预测效果。具体而言,Transformer编码器用于捕捉数据中的长短期依赖关系,BiLSTM层用于进一步提炼时间序列的复杂特征,TTAO优化器则用于提升模型的训练效率和稳定性。通过在多个数据集上的实验验证,本文所提模型在预测精度和稳定性方面均优于传统方法。

二、数据与方法

1、数据准备

在本研究中,为了提高模型的预测性能,我们对原始数据进行了预处理,归一化处理。

2、模型构建
2.1、Transformer编码器在模型中的作用与设计

Transformer编码器通过自注意力机制,使得模型能够关注到输入序列中的所有元素,而不仅仅是前一个或后一个元素。这种机制特别适合于捕捉时间序列数据中的长短期依赖关系。在我们的模型中,Transformer编码器被设计用来处理多变量时间序列数据,通过多头的自注意力机制,模型能够从不同角度捕捉数据中的复杂关系。

2.2、BiLSTM层在捕捉时间序列依赖关系中的功能

BiLSTM层通过其双向的循环结构,能够同时利用过去和未来的上下文信息来预测当前时间步的输出。这使得BiLSTM在处理时间序列数据时具有独特的优势。在我们的模型中,BiLSTM层被添加到Transformer编码器的输出之上,以进一步提炼时间序列的复杂特征,提高模型的预测性能。

2.3、TTAO优化器的原理及其在模型优化中的优势

TTAO优化器通过模拟三角形拓扑结构,实现了更高效的参数更新和更稳定的训练过程。与传统的优化器相比,TTAO优化器在处理复杂模型时,能够更好地避免局部最优解,提高模型的泛化能力。在我们的模型中,TTAO优化器被用于训练整个TTAO-Transformer-BiLSTM模型,通过高效的参数优化,提升模型的预测精度和稳定性。

3、模型训练与验证

在模型训练过程中,我们采用了交叉验证的方法来评估模型的性能和稳定性。具体而言,我们将数据集划分为训练集、验证集和测试集,通过在训练集上训练模型,在验证集上调优超参数,最终在测试集上评估模型的预测性能。为了进一步提升模型的泛化能力,我们还采用了数据增强技术,包括随机噪声添加和时间序列窗滑动等。此外,我们还对模型的超参数进行了细致的调整,包括学习率、批次大小、正则化系数等,以达到最佳的预测效果。

三、实验结果

1、实验设置

为了全面评估TTAO-Transformer-BiLSTM模型的性能,评估指标包括均方误差(MSE)、均方根误差(RMSE)和绝对误差(MAE),这些指标能够量化模型的预测误差,从而评估模型的性能。

2、结果展示

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、结论与展望

1、研究总结

本文提出了一种新的多变量回归预测模型——TTAO-Transformer-BiLSTM,通过结合Transformer编码器、BiLSTM层和TTAO优化器,实现了高效的预测。

2、研究展望

尽管TTAO-Transformer-BiLSTM模型在多变量回归预测上取得了良好的效果,但仍有改进的空间。未来的研究可以考虑引入更多的数据增强技术,进一步提升模型的泛化能力。此外,探索更高效的优化算法和模型结构,也是未来研究的重要方向。具体而言,可以研究如何将TTAO优化器与其他先进的优化算法结合,以提高模型的训练效率和预测性能;还可以研究如何将Transformer编码器和BiLSTM层与其他先进的深度学习模型结合,以捕捉更复杂的时间序列特征。


%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));t_train = t_train';
t_test  = t_test' ;%%  数据格式转换
for i = 1 : Mp_train{i, 1} = P_train(:, :, 1, i);
endfor i = 1 : Np_test{i, 1}  = P_test( :, :, 1, i);
end%%  参数设置
options = trainingOptions('adam', ...           % Adam 梯度下降算法'MaxEpochs', 100, ...                  % 最大训练次数'MiniBatchSize',64, ...                %批大小,每次调整参数前所选取的样本数量'InitialLearnRate', Positions(1), ...  % 初始学习率 best_lr'LearnRateSchedule', 'piecewise', ...  % 学习率下降'LearnRateDropFactor', 0.5, ...        % 学习率下降因子'LearnRateDropPeriod', 50, ...         % 经过训练后 学习率'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集'ValidationPatience', Inf, ...         % 关闭验证'L2Regularization', Positions(3), ...  % 正则化参数'Verbose', false);%%  模型训练
net = trainNetwork(p_train, t_train, lgraph, options);%%  仿真预测
t_sim = predict(net, p_train);%%  计算适应度
fitness = sqrt(sum((t_sim - t_train).^2) ./ length(t_sim));end

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/895309.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Jenkins+gitee 搭建自动化部署

Jenkinsgitee 搭建自动化部署 环境说明: 软件版本备注CentOS8.5.2111JDK1.8.0_211Maven3.8.8git2.27.0Jenkins2.319最好选稳定版本,不然安装插件有点麻烦 一、安装Jenkins程序 1、到官网下载相应的版本war或者直接使用yum安装 Jenkins官网下载 直接…

AI 编程开发插件codeium Windsurf(vscode、editor) 安装

1、vscode中安装: 2、vscode中使用 3、输入注册的账号密码,就可以使用。 4、或者直接下载editor 5、安装editor 下一步,下一步,直到安装成功,中间可以改下安装位置,如果C盘空间不够。 同样提示注册或者登录…

【Mac排错】ls: command not found 终端命令失效的解决办法

【TroubleShooting on Mac】ls: command not found 终端命令失效的解决办法 A Solution to Solve “Command not found” of Terminal on Mac 一直在使用心爱的MacBook Pro的Terminal,并且为她定制了不同的Profile。 这样,看起来她可以在不同季节&…

河北某石油管廊自动化监测

1. 项目简介 近年来,国家密集出台油气管道建设相关政策和规划引导中国油气管道加快建设,2017年,在《中长期油气管网规划》中对2025年和2030年油气管道发展目标均作出了相应的规划目标。另一方面,随着油气管道行业的发展&#xff…

问题:通过策略模式+工厂模式+模板方法模式实现ifelse优化

项目场景: 提示:这里简述项目相关背景: 示例:商城系统有会员系统,不同会员有不同优惠程度,普通会员不优惠;黄金会员打8折;白金会员优惠50元,再打7折; 问题描…

Android ndk兼容 64bit so报错

1、报错logcat如下 2025-01-13 11:34:41.963 4687-4687 DEBUG pid-4687 A #01 pc 00000000000063b8 /system/lib64/liblog.so (__android_log_default_aborter16) (BuildId: 467c2038cdfa767245f9280e657fdb85) 2025…

centos安装Nexus Repository OSS(Maven私服)

1. 下载链接:https://help.sonatype.com/en/download.html 2. 注意页面下载页面中的要求:JDK17(启动时提示最低JDK1.8最高JDK17,但是使用JDK1.8无法正常启动) 3. mkdir /opt/nexus 将压缩包上传到该目录并解压。 tar …

b站——《【强化学习】一小时完全入门》学习笔记及代码(1-3 多臂老虎机)

问题陈述 我们有两个多臂老虎机(Multi-Armed Bandit),分别称为左边的老虎机和右边的老虎机。每个老虎机的奖励服从不同的正态分布: 左边的老虎机:奖励服从均值为 500,标准差为 50 的正态分布,即…

Linux:安装 node 及 nvm node 版本管理工具(ubuntu )

目录 方法一:手动下载安装文件安装方法二:curl安装 方法一:手动下载安装文件安装 git clone 远程镜像 git clone https://gitee.com/mirrors/nvm安装 nvm bash install.sh刷新配置,使配置在终端生效 // 方法 1 source /root/.…

基于STM32的ADS1230驱动例程

自己在练手项目中用到了ADS1230,根据芯片手册自写的驱动代码,已测可用,希望对将要用到ADS1230芯片的人有所帮助。 芯片:STM32系列任意芯片、ADS1230 环境:使用STM32CubeMX配置引脚、KEIL 部分电路: 代码…

游戏引擎学习第98天

仓库:https://gitee.com/mrxiao_com/2d_game_2 开始进行一点回顾 今天的目标是继续实现正常贴图的操作,尽管目前我们还没有足够的光照信息来使其完全有用。昨日完成了正常贴图相关的基础工作,接下来将集中精力实现正常贴图的基本操作,并准备…

Windows 本地部署大模型 OpenWebUI+Ollama

安装Ollama Ollama官方网址:https://ollama.com 下载运行大模型 在Ollama官网中查看需要下载的大模型 https://ollama.com/library 复制图片中的链接 打开cmd,运行此命令(此过程会时间会很久) 下载Miniconda Miniconda作用是…

npm运行Vue项目报错 error:0308010c:digital envelope routines::unsupported

大家好,我是 程序员码递夫。 问题 VSCode 运行Vue项目,提示错误: building 2/2 modules 0 activeError: error:0308010c:digital envelope routines::unsupported 解决方法 原因是 npm 高版本(大于17),对ssl的处理做了改进&…

安川伺服控制器MP系列优势特点及行业应用

在工业自动化领域,运动控制器的性能直接决定了设备的精度、效率和可靠性。作为全球领先的运动控制品牌,安川电机伺服控制器凭借其卓越的技术优势和广泛的应用场景,正在为智能制造注入强劲动力! MP3100:主板型运动控制…

Python----PyQt开发(PyQt高级:图像显示,定时器,进度条)

一、图像显示 1.1、增加图标 1.直接创建setWindowIcon(QIcon(灯泡.jpg)) import sys from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton from PyQt5.QtGui import QIconclass MainWindow(QMainWindow):def __init__(self):super(MainWindow, self).__init_…

工业路由器物联网应用,智慧环保环境数据监测

在智慧环保环境数据监测中工业路由器能连接各类分散的传感器,实现多源环境数据集中采集,并通过多种通信网络稳定传输至数据中心或云平台。 工作人员借助工业路由器可远程监控设备状态与环境数据,还能远程配置传感器参数。远程控制设置数据阈…

【DeepSeek】在本地计算机上部署DeepSeek-R1大模型实战(完整版)

【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈人工智能与大模型应用 ⌋ ⌋ ⌋ 人工智能(AI)通过算法模拟人类智能,利用机器学习、深度学习等技术驱动医疗、金融等领域的智能化。大模型是千亿参数的深度神经网络(如ChatGPT&…

JAVA并发编程3--多线程程序

​ 1.创建线程的方法: 案例:计算1-1000的整数和 实现Runnable接口 步骤: 1.创建一个实现了Runnable接口的类 2.实现类去实现Runnable中的抽象方法:run() 3.创建实现类的对象 4.将此对象作为参数传递到Thread类的构造器中&#…

django中间件,中间件给下面传值

1、新建middleware.py文件 # myapp/middleware.py import time from django.http import HttpRequest import json from django.http import JsonResponse import urllib.parse class RequestTimeMiddleware:def __init__(self, get_response):self.get_response get_respons…

Vision Transformer:打破CNN垄断,全局注意力机制重塑计算机视觉范式

目录 引言 一、ViT模型的起源和历史 二、什么是ViT? 图像处理流程 图像切分 展平与线性映射 位置编码 Transformer编码器 分类头(Classification Head) 自注意力机制 注意力图 三、Coovally AI模型训练与应用平台 四、ViT与图像…