算法基础之八大排序

文章目录

    • 概要
    • 1. 冒泡排序(Bubble Sort)
    • 2. 选择排序(Selection Sort)
    • 3. 插入排序(Insertion Sort)
    • 4. 希尔排序(Shell Sort)
    • 5. 归并排序(Merge Sort)
    • 6. 快速排序(Quick Sort)
    • 7. 堆排序(Heap Sort)
    • 8. 计数排序(Counting Sort)
  • 小结

概要

排序算法是编程中最基础也是最重要的算法之一。通过学习和理解不同的排序算法,我们可以在实际开发中选择合适的算法来解决问题。本文将介绍八大常用排序算法,并分别用 Python、C++ 和 Java 三种语言实现。


时间复杂度

1. 冒泡排序(Bubble Sort)

算法描述: 冒泡排序是一种简单的排序算法,通过不断交换相邻元素,使得较大的元素“浮”到数组的末尾。

时间复杂度

  • 最佳情况:O(n)
  • 平均情况:O(n²)
  • 最坏情况:O(n²)

空间复杂度: O(1)
稳定性: 稳定

实现步骤

  1. 比较相邻元素,前大则交换

  2. 对每一对相邻元素重复操作

  3. 每次遍历后范围缩小1

  4. 重复直到无交换发生

代码实现

python版本

def bubble_sort(arr):n = len(arr)for i in range(n-1):for j in range(n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]return arr

C++版本

void bubbleSort(int arr[], int n) {for (int i = 0; i < n-1; i++) {for (int j = 0; j < n-i-1; j++) {if (arr[j] > arr[j+1]) {// Swap elementsint temp = arr[j];arr[j] = arr[j+1];arr[j+1] = temp;}}}
}

Java版本

public class BubbleSort {public static void bubbleSort(int[] arr) {int n = arr.length;for (int i = 0; i < n-1; i++) {for (int j = 0; j < n-i-1; j++) {if (arr[j] > arr[j+1]) {// Swap elementsint temp = arr[j];arr[j] = arr[j+1];arr[j+1] = temp;}}}}
}

2. 选择排序(Selection Sort)

算法描述: 选择排序通过分为有序区和无序区,逐步从无序区中找到最小元素,放到有序区的末尾。

时间复杂度:

  • 最佳情况:O(n²)
  • 平均情况:O(n²)
  • 最坏情况:O(n²)

空间复杂度: O(1)

稳定性: 不稳定

代码实现
python版本

# Python
def bubble_sort(arr):n = len(arr)for i in range(n-1):swapped = Falsefor j in range(n-1-i):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]swapped = Trueif not swapped:breakreturn arr

C++版本

// C++
void bubbleSort(int arr[], int n) {for (int i = 0; i < n-1; ++i) {bool swapped = false;for (int j = 0; j < n-1-i; ++j) {if (arr[j] > arr[j+1]) {swap(arr[j], arr[j+1]);swapped = true;}}if (!swapped) break;}
}

Java版本

// Java
public static void bubbleSort(int[] arr) {int n = arr.length;for (int i = 0; i < n-1; i++) {boolean swapped = false;for (int j = 0; j < n-1-i; j++) {if (arr[j] > arr[j+1]) {int temp = arr[j];arr[j] = arr[j+1];arr[j+1] = temp;swapped = true;}}if (!swapped) break;}
}

3. 插入排序(Insertion Sort)

算法思想: 将未排序元素逐个插入已排序序列的合适位置

时间复杂度:

  • 平均:O(n²)

  • 最坏:O(n²)

  • 最好:O(n)

稳定性: 稳定

python版本

# Python
def insertion_sort(arr):for i in range(1, len(arr)):key = arr[i]j = i-1while j >=0 and key < arr[j] :arr[j+1] = arr[j]j -= 1arr[j+1] = keyreturn arr

C++版本

// C++
void insertionSort(int arr[], int n) {for (int i = 1; i < n; ++i) {int key = arr[i];int j = i-1;while (j >= 0 && arr[j] > key) {arr[j+1] = arr[j];j--;}arr[j+1] = key;}
}

Java版本

// Java
public static void insertionSort(int[] arr) {for (int i = 1; i < arr.length; ++i) {int key = arr[i];int j = i - 1;while (j >= 0 && arr[j] > key) {arr[j+1] = arr[j];j--;}arr[j+1] = key;}
}

4. 希尔排序(Shell Sort)

算法思想: 改进的插入排序,通过间隔分组进行预处理
时间复杂度: O(n log n) ~ O(n²)
稳定性: 不稳定

python版本

# Python
def shell_sort(arr):n = len(arr)gap = n//2while gap > 0:for i in range(gap, n):temp = arr[i]j = iwhile j >= gap and arr[j-gap] > temp:arr[j] = arr[j-gap]j -= gaparr[j] = tempgap //= 2return arr

C++版本

// C++
void shellSort(int arr[], int n) {for (int gap = n/2; gap > 0; gap /= 2) {for (int i = gap; i < n; ++i) {int temp = arr[i];int j;for (j = i; j >= gap && arr[j - gap] > temp; j -= gap)arr[j] = arr[j - gap];arr[j] = temp;}}
}

Java版本

// Java
public static void shellSort(int[] arr) {int n = arr.length;for (int gap = n/2; gap > 0; gap /= 2) {for (int i = gap; i < n; i++) {int temp = arr[i];int j;for (j = i; j >= gap && arr[j - gap] > temp; j -= gap)arr[j] = arr[j - gap];arr[j] = temp;}}
}

5. 归并排序(Merge Sort)

算法思想: 分治法,递归拆分后合并有序子序列
时间复杂度: O(n log n)
稳定性: 稳定

python版本

# Python
def merge_sort(arr):if len(arr) > 1:mid = len(arr)//2L = arr[:mid]R = arr[mid:]merge_sort(L)merge_sort(R)i = j = k = 0while i < len(L) and j < len(R):if L[i] < R[j]:arr[k] = L[i]i += 1else:arr[k] = R[j]j += 1k += 1while i < len(L):arr[k] = L[i]i += 1k += 1while j < len(R):arr[k] = R[j]j += 1k += 1return arr

C++版本:

// C++
void merge(int arr[], int l, int m, int r) {int n1 = m - l + 1;int n2 = r - m;int L[n1], R[n2];for (int i = 0; i < n1; i++)L[i] = arr[l + i];for (int j = 0; j < n2; j++)R[j] = arr[m + 1 + j];int i = 0, j = 0, k = l;while (i < n1 && j < n2) {if (L[i] <= R[j]) {arr[k] = L[i];i++;} else {arr[k] = R[j];j++;}k++;}while (i < n1) arr[k++] = L[i++];while (j < n2) arr[k++] = R[j++];
}void mergeSort(int arr[], int l, int r) {if (l < r) {int m = l + (r - l)/2;mergeSort(arr, l, m);mergeSort(arr, m+1, r);merge(arr, l, m, r);}
}

Java版本

// Java
public static void mergeSort(int[] arr, int l, int r) {if (l < r) {int m = (l + r) / 2;mergeSort(arr, l, m);mergeSort(arr, m + 1, r);int[] L = Arrays.copyOfRange(arr, l, m + 1);int[] R = Arrays.copyOfRange(arr, m + 1, r + 1);int i = 0, j = 0, k = l;while (i < L.length && j < R.length) {if (L[i] <= R[j]) arr[k++] = L[i++];else arr[k++] = R[j++];}while (i < L.length) arr[k++] = L[i++];while (j < R.length) arr[k++] = R[j++];}
}

6. 快速排序(Quick Sort)

算法思想: 分治法,选取基准元素进行分区排序
时间复杂度:

  • 平均:O(n log n)

  • 最坏:O(n²)

稳定性: 不稳定

python版本

在这里插入代码片# Python
def quick_sort(arr):if len(arr) <= 1:return arrpivot = arr[len(arr)//2]left = [x for x in arr if x < pivot]middle = [x for x in arr if x == pivot]right = [x for x in arr if x > pivot]return quick_sort(left) + middle + quick_sort(right)

C++版本:

// C++
int partition(int arr[], int low, int high) {int pivot = arr[high];int i = low - 1;for (int j = low; j < high; j++) {if (arr[j] < pivot) {i++;swap(arr[i], arr[j]);}}swap(arr[i+1], arr[high]);return i+1;
}void quickSort(int arr[], int low, int high) {if (low < high) {int pi = partition(arr, low, high);quickSort(arr, low, pi-1);quickSort(arr, pi+1, high);}
}

Java版本

// Java
public static void quickSort(int[] arr, int low, int high) {if (low < high) {int pi = partition(arr, low, high);quickSort(arr, low, pi-1);quickSort(arr, pi+1, high);}
}private static int partition(int[] arr, int low, int high) {int pivot = arr[high];int i = low - 1;for (int j = low; j < high; j++) {if (arr[j] < pivot) {i++;int temp = arr[i];arr[i] = arr[j];arr[j] = temp;}}int temp = arr[i+1];arr[i+1] = arr[high];arr[high] = temp;return i+1;
}

7. 堆排序(Heap Sort)

算法思想: 利用堆数据结构进行选择排序
时间复杂度: O(n log n)
稳定性: 不稳定

python版本

# Python
def heapify(arr, n, i):largest = il = 2 * i + 1r = 2 * i + 2if l < n and arr[l] > arr[largest]:largest = lif r < n and arr[r] > arr[largest]:largest = rif largest != i:arr[i], arr[largest] = arr[largest], arr[i]heapify(arr, n, largest)def heap_sort(arr):n = len(arr)for i in range(n//2-1, -1, -1):heapify(arr, n, i)for i in range(n-1, 0, -1):arr[i], arr[0] = arr[0], arr[i]heapify(arr, i, 0)return arr

C++版本:

// C++
void heapify(int arr[], int n, int i) {int largest = i;int l = 2*i + 1;int r = 2*i + 2;if (l < n && arr[l] > arr[largest])largest = l;if (r < n && arr[r] > arr[largest])largest = r;if (largest != i) {swap(arr[i], arr[largest]);heapify(arr, n, largest);}
}void heapSort(int arr[], int n) {for (int i = n/2 - 1; i >= 0; i--)heapify(arr, n, i);for (int i = n-1; i > 0; i--) {swap(arr[0], arr[i]);heapify(arr, i, 0);}
}

Java版本

// Java
public static void heapSort(int[] arr) {int n = arr.length;for (int i = n/2 - 1; i >= 0; i--)heapify(arr, n, i);for (int i = n-1; i > 0; i--) {int temp = arr[0];arr[0] = arr[i];arr[i] = temp;heapify(arr, i, 0);}
}private static void heapify(int[] arr, int n, int i) {int largest = i;int l = 2*i + 1;int r = 2*i + 2;if (l < n && arr[l] > arr[largest]) largest = l;if (r < n && arr[r] > arr[largest]) largest = r;if (largest != i) {int swap = arr[i];arr[i] = arr[largest];arr[largest] = swap;heapify(arr, n, largest);}
}

8. 计数排序(Counting Sort)

适用场景: 整数排序且值范围不大
时间复杂度: O(n + k)
稳定性: 稳定

python版本

# Python
def counting_sort(arr):max_val = max(arr)count = [0] * (max_val + 1)for num in arr:count[num] += 1idx = 0for i in range(len(count)):while count[i] > 0:arr[idx] = iidx += 1count[i] -= 1return arr

C++版本:

// C++
void countingSort(int arr[], int n) {int maxVal = *max_element(arr, arr + n);int count[maxVal + 1] = {0};for (int i = 0; i < n; i++)count[arr[i]]++;int idx = 0;for (int i = 0; i <= maxVal; i++) {while (count[i]-- > 0) {arr[idx++] = i;}}
}

Java版本

// Java
public static void countingSort(int[] arr) {int maxVal = Arrays.stream(arr).max().getAsInt();int[] count = new int[maxVal + 1];for (int num : arr) count[num]++;int idx = 0;for (int i = 0; i <= maxVal; i++) {while (count[i]-- > 0) {arr[idx++] = i;}}
}

小结

排序算法平均时间复杂度最坏时间复杂度空间复杂度稳定性
冒泡排序O(n²)O(n²)O(1)稳定
选择排序O(n²)O(n²)O(1)不稳定
插入排序O(n²)O(n²)O(1)稳定
希尔排序O(n log n)O(n²)O(1)不稳定
归并排序O(n log n)O(n log n)O(n)稳定
快速排序O(n log n)O(n²)O(log n)不稳定
堆排序O(n log n)O(n log n)O(1)不稳定
计数排序O(n + k)O(n + k)O(k)稳定

注:k为计数排序的值域范围

应用场景建议:

  • 小规模数据:插入排序

  • 通用高效:快速排序

  • 内存敏感:堆排序

  • 稳定需求:归并排序

  • 整数排序:计数排序

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/894970.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

html 列动态布局

样式说明&#xff1a; /* 列动态布局&#xff0c;列之间以空格填充 */ li {display: flex;/* flex-direction: column; */justify-content: space-between; }

从O(k*n)到O(1):如何用哈希表终结多层if判断的性能困局

【前言】   本文将以哈希表重构实战为核心&#xff0c;完整展示如何将传统条件匹配逻辑(上千层if-else判断)转化为O(1)的哈希表高效实现。通过指纹验证场景的代码级解剖&#xff0c;您将深入理解&#xff1a;   1.哈希函数设计如何规避冲突陷阱   2.链式寻址法的工程实现…

第 26 场 蓝桥入门赛

3.电子舞龙【算法赛】 - 蓝桥云课 问题描述 话说这年头&#xff0c;连舞龙都得电子化&#xff01;这不&#xff0c;蓝桥村的老程序员王大爷突发奇想&#xff0c;用LED灯带和一堆传感器鼓捣出了一条“电子舞龙”&#xff0c;它能根据程序指令在村里的广场上“翩翩起舞”。 广…

0012—数组

存取一组数据&#xff0c;使用数组。 数组是一组相同类型元素的集合。 要存储1-10的数字&#xff0c;怎么存储&#xff1f; C语言中给了数组的定义&#xff1a;一组相同类型元素的集合。 创建一个空间创建一组数&#xff1a; 一、数组的定义 int arr[10] {1,2,3,4,5,6,7,8,…

详细教程 | 如何使用DolphinScheduler调度Flink实时任务

Apache DolphinScheduler 非常适用于实时数据处理场景&#xff0c;尤其是与 Apache Flink 的集成。DolphinScheduler 提供了丰富的功能&#xff0c;包括任务依赖管理、动态调度、实时监控和日志管理&#xff0c;能够有效简化 Flink 实时任务的管理和部署。通过 DolphinSchedule…

了解传输层TCP协议

目录 一、TCP协议段格式 二、TCP原理 1.确认应答 2.超时重传 3.连接管理 建立连接 断开连接 4.滑动窗口 5.流量控制 6.拥塞控制 7.延时应答 8.捎带应答 9.面向字节流 10.TCP异常情况 TCP&#xff0c;即Transmission Control Protocol&#xff0c;传输控制协议。人如…

idea 如何使用deepseek 保姆级教程

1.安装idea插件codegpt 2.注册deepseek并生成apikey deepseek 开发平台&#xff1a; DeepSeek​​​​​​​ 3.在idea进行codegpt配置 打开idea的File->Settings->Tools->CodeGPT->Providers->Custom OpenAI Chat Completions的URL填写 https://api.deepseek…

Linux之kernel(1)系统基础理论(1)

Linux之Kernel(1)系统基础理论(1) Author: Once Day Date: 2025年2月6日 一位热衷于Linux学习和开发的菜鸟&#xff0c;试图谱写一场冒险之旅&#xff0c;也许终点只是一场白日梦… 漫漫长路&#xff0c;有人对你微笑过嘛… 全系列文章可参考专栏: Linux内核知识_Once-Day的…

【读书笔记·VLSI电路设计方法解密】问题46:什么是bug覆盖率

在IC设计项目的验证过程中&#xff0c;功能测试&#xff08;通过使用测试平台&#xff09;有助于定位设计错误或漏洞。这个验证过程有三个阶段&#xff1a;构建和启动测试平台、验证基本测试用例以及验证边界情况。 在前两个阶段&#xff0c;漏洞很容易被检测到&#xff0c;因…

【python】简单的flask做页面。一组字母组成的所有单词。这里的输入是一组字母,而输出是所有可能得字母组成的单词列表

目录结构如下&#xff1a; . ├── static │ ├── css │ │ └── styles.css │ └── js │ └── scripts.js ├── templates │ ├── base.html │ ├── case_converter.html │ ├── index.html │ └── word_finder.html ├── app.py ├── tree.py…

【ArcGIS Pro 简介1】

ArcGIS Pro 是由 Esri &#xff08;Environmental Systems Research Institute&#xff09;公司开发的下一代桌面地理信息系统&#xff08;GIS&#xff09;软件&#xff0c;是传统 ArcMap 的现代化替代产品。它结合了强大的空间分析能力、直观的用户界面和先进的三维可视化技术…

JAVA安全—FastJson反序列化利用链跟踪autoType绕过

前言 FastJson这个漏洞我们之前讲过了,今天主要是对它的链条进行分析一下,明白链条的构造原理。 Java安全—log4j日志&FastJson序列化&JNDI注入_log4j漏洞-CSDN博客 漏洞版本 1.2.24及以下没有对序列化的类做校验,导致漏洞产生 1.2.25-1.2.41增加了黑名单限制,…

力扣240 搜索二维矩阵 ll

编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性&#xff1a; 每行的元素从左到右升序排列。每列的元素从上到下升序排列。 示例 1&#xff1a; 输入&#xff1a;matrix [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,…

C语言按位取反【~】详解,含原码反码补码的0基础讲解【原码反码补码严格意义上来说属于计算机组成原理的范畴,不过这也是学好编程初级阶段的必修课】

目录 概述【适合0基础看的简要描述】&#xff1a; 上述加粗下划线的内容提取版&#xff1a; 从上述概述中提取的核心知识点&#xff0c;需背诵&#xff1a; 整数【包含整数&#xff0c;负整数和0】的原码反码补码相互转换的过程图示&#xff1a; 过程详细刨析&#xff1a;…

StarSpider 星蛛 爬虫 Java框架 可以实现 lazy爬取 实现 HTML 文件的编译,子标签缓存等操作

StarSpider 星蛛 爬虫 Java框架 开源技术栏 StarSpider 能够实现 针对 HTML XSS SQL 数学表达式等杂乱数据的 爬取 解析 提取 需求&#xff01; 目录 文章目录 StarSpider 星蛛 爬虫 Java框架目录介绍如何获取&#xff1f;maven配置 架构是什么样的&#xff1f;结果对象的类…

音频进阶学习十一——离散傅里叶级数DFS

文章目录 前言一、傅里叶级数1.定义2.周期信号序列3.表达式DFSIDFS参数含义 4.DFS公式解析1&#xff09;右边解析 T T T、 f f f、 ω \omega ω的关系求和公式N的释义求和公式K的释义 e j ( − 2 π k n N ) e^{j(\frac{-2\pi kn}{N})} ej(N−2πkn​)的释义 ∑ n 0 N − 1 e…

C++ Primer 成员访问运算符

欢迎阅读我的 【CPrimer】专栏 专栏简介&#xff1a;本专栏主要面向C初学者&#xff0c;解释C的一些基本概念和基础语言特性&#xff0c;涉及C标准库的用法&#xff0c;面向对象特性&#xff0c;泛型特性高级用法。通过使用标准库中定义的抽象设施&#xff0c;使你更加适应高级…

基础入门-算法解密散列对称非对称字典碰撞前后端逆向MD5AESDESRSA

知识点&#xff1a; 0、算法类型-单向散列&对称性&非对称性 1、算法识别加解密-MD5&AES&DES&RSA 2、解密条件寻找-逻辑特征&源码中&JS分析 应用场景&#xff1a; 1、发送数据的时候自动将数据加密发送&#xff08;只需加密即可&#xff09; 安全…

Qt修仙之路2-1 炼丹初成

widget.cpp #include "widget.h" #include<QDebug> //实现槽函数 void Widget::login1() {QString userusername_input->text();QString passpassword_input->text();//如果不勾选无法登入if(!check->isChecked()){qDebug()<<"xxx"&…

【R语言】环境空间

一、环境空间的特点 环境空间是一种特殊类型的变量&#xff0c;它可以像其它变量一样被分配和操作&#xff0c;还可以以参数的形式传递给函数。 R语言中环境空间具有如下3个特点&#xff1a; 1、对象名称唯一性 此特点指的是在不同的环境空间中可以有同名的变量出现&#x…