多无人机--强化学习

这个是我对于我的大创项目的构思,随着时间逐渐更新

项目概要

我们的项目平台来自挑战杯揭绑挂帅的无人机对抗项目,但是在由于时间原因,并未考虑强化学习,所以现在通过大创项目来弥补遗憾

我们项目分为三部分,分为虚拟机,态势系统,和运行程序端(使用主机)

虚拟机内包含各种无人机信息,并封装为接口供windows端控制

态势系统主要是用来显示战场的情况,使得态势可视化

运行程序端编写程序进行无人机控制

启动顺序为

虚拟机-》态势系统-》运行程序端

项目学习基础

强化学习:

       学习马尔可夫决策决策过程(MDP)

       学习强化学习主要算法:

              值迭代法,策略梯度法 重点学习PPO和DDPG

如果对于强化学习公式的了解较少的可以观看b站上的课程

【强化学习的数学原理】课程:从零开始到透彻理解(完结)_哔哩哔哩_bilibili

由于这里我们目前所使用的公式原因,先学习

了解仿真平台

       对于各种API的研究(前期工作)

        理解无人机的各种参数

对于linux系统的了解(前期工作)

        学习一些基础操作,并对于其提供的虚拟机实现了解

对于强化学习接口搭建(完成Gym接口)封装Linux接口作为训练环境

首先利用PPO/DDPG训练单无人机基础移动(边界避障,上下限制)

进行侦察训练,导弹躲避训练

然后再加入对抗系统,使得无人机与敌机进行交互

首先是蓝方设计固定策略进行训练

然后红蓝方都进行强化学习训练

目前较为适合的最终算法(改进的MADDPG)

基础知识

Linux

一些基础linux命令总结为linux命令

如下

linux命令-CSDN博客

然后需要查看shell脚本

这里推荐黑马程序员的课程

02.shell入门(1)_哔哩哔哩_bilibili

强化学习

然后是强化学习的基础知识

马尔可夫决策

基本元素

  1. 状态集(State Space)
    记为 S,表示系统可能处于的所有状态的集合。例如,在一个迷宫环境中,每个格子可以看作一个状态;在资源分配问题中,状态可以是当前资源的使用量、剩余量等的组合。

  2. 动作集(Action Space)
    记为 A,表示在每个状态下可执行的所有动作。例如,在迷宫中可向上、下、左、右移动;在资源分配问题中可以为“给某个任务分配多少资源”等不同策略选项。

  3. 状态转移概率(Transition Probability)
    记为 P(s′∣s,a),表示当前处于状态 s,执行动作 a 之后,转移到下一状态 s′ 的概率。这也是“马尔可夫”性质的来源:转移只与当前状态和当前动作相关,而与之前的历史状态无关。

  4. 奖励函数(Reward Function)
    记为 R(s,a)或 R(s,a,s′),表示在状态 s 执行动作 a并转移到状态 s′时得到的即时回报。这个回报值可能是正的(奖励)或负的(惩罚)。

  5. 折扣因子(Discount Factor)
    记为 γ,取值范围通常在 [0,1] 之间。它用于平衡短期和长期收益的重要性:当 γ越接近 1 时,更注重长期回报;当 γ越小,越关注即时回报。

决策过程

  • 观察状态
    系统(或智能体)观察当前状态 s。

  • 选择动作
    根据一定的策略(policy)π\piπ,在状态 sss 下选择一个动作 aaa。策略 π\piπ 可以理解为一个函数或规则,用于指定在不同状态下执行哪一个动作。

  • 环境反馈

    • 状态转移:在环境中执行动作 aaa 后,系统会随机地转移到下一个状态 s′s's′(由转移概率 P(s′∣s,a)P(s' \mid s,a)P(s′∣s,a) 决定)。
    • 得到奖励:与此同时,系统给予执行该动作的即时回报 R(s,a)R(s,a)R(s,a) 或 R(s,a,s′)R(s, a, s')R(s,a,s′)。
  • 更新决策
    基于新的状态 s′s's′ 和获得的奖励,智能体可以对其策略 π\piπ 进行更新或继续保持不变,具体取决于使用的算法(例如价值迭代、策略迭代、Q 学习、深度强化学习等)。

  • 进入下一轮决策
    新的状态 s′s's′ 成为当前状态,系统重复上述过程,直到达到终止条件(如达到目标状态、达到最大交互步数、收敛到稳定策略等)

PPO

DDPG 

note:无人机飞行是连续的动作,使用 DDPG

聚焦连续动作空间,使用确定性策略和 Critic-Q 网络来估计动作价值,具备较高的数据利用效率,但也对训练稳定性和超参数选择有更高要求。

MADDPG

多无人机对战是多智能体和DDPG的结合

  • 集中式 Critic:在训练过程中,每个智能体的 Critic 都可以访问 全局信息,包括所有智能体的状态和动作。这使得 Critic 在更新时对环境动态和其他智能体决策有更全面的认识,缓解了环境非平稳问题。
  • 分散式 Actor:在执行阶段,每个智能体只基于自身的局部观测来进行决策,保持灵活性与可扩展性。

初步研究

动作设置:

        我们使用机动号操作无人机进行对战,一共执行五个状态,平飞,俯冲,平飞加减速,爬升,转弯

奖励函数设置

初步设计为分为多个阶段,进行分开训练,分为巡航,进攻,躲避,撤退四个策略,通过条件进行状态转移

开始设计初步的奖励和惩罚函数

巡航:

        奖励项:侦察到敌方无人机,侦察到敌方无人机时的高度差

        惩罚项:碰撞到边界

进攻:

        奖励项:导弹命中敌方无人机

        惩罚项:敌方无人机脱离我方锁定

躲避:

        奖励:躲避敌方导弹

撤退:

        奖励:??

        惩罚:被敌方无人机侦测

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/894748.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python----Python高级(并发编程:进程Process,多进程,进程间通信,进程同步,进程池)

一、进程Process 拥有自己独立的堆和栈,既不共享堆,也不共享栈,进程由操作系统调度;进程切换需要的资源很最大,效率低。 对于操作系统来说,一个任务就是一个进程(Process)&#xff…

在Mapbox GL JS中“line-pattern”的使用详解

在Mapbox GL JS中,line-pattern 是一种用于在地图上绘制带有图案的线条的样式属性。通过 line-pattern,你可以使用自定义的图像作为线条的图案,而不是使用纯色或渐变。 1. 基本概念 line-pattern: 该属性允许你指定一个图像作为线条的图案。…

C++ Primer 算术运算符

欢迎阅读我的 【CPrimer】专栏 专栏简介:本专栏主要面向C初学者,解释C的一些基本概念和基础语言特性,涉及C标准库的用法,面向对象特性,泛型特性高级用法。通过使用标准库中定义的抽象设施,使你更加适应高级…

【大数据技术】本机PyCharm远程连接虚拟机Python

本机PyCharm远程连接虚拟机Python 注意:本文需要使用PyCharm专业版。 pycharm-professional-2024.1.4VMware Workstation Pro 16CentOS-Stream-10-latest-x86_64-dvd1.iso写在前面 本文主要介绍如何使用本地PyCharm远程连接虚拟机,运行Python脚本,提高编程效率。 注意: …

MyBatis-Plus笔记-快速入门

大家在日常开发中应该能发现,单表的CRUD功能代码重复度很高,也没有什么难度。而这部分代码量往往比较大,开发起来比较费时。 因此,目前企业中都会使用一些组件来简化或省略单表的CRUD开发工作。目前在国内使用较多的一个组件就是…

Maven jar 包下载失败问题处理

Maven jar 包下载失败问题处理 1.配置好国内的Maven源2.重新下载3. 其他问题 1.配置好国内的Maven源 打开⾃⼰的 Idea 检测 Maven 的配置是否正确,正确的配置如下图所示: 检查项⼀共有两个: 确认右边的两个勾已经选中,如果没有请…

2.5学习

misc buuctf-假如给我三天光明 下载附件后得到了一个压缩包和一个图片,压缩包为加密压缩包,需要解出密码,然后注意到这个图片并非简单的一个封面,在下方还有诸多点,有黑有灰。经过搜索,发现这是盲文通过与…

java进阶1——JVM

java进阶——JVM 1、JVM概述 作用 Java 虚拟机就是二进制字节码的运行环境,负责装载字节码到其内部,解释/编译为对 应平台上的机器码指令行,每一条 java 指令,java 虚拟机中都有详细定义,如怎么取操 作数&#xff0c…

搭建集成开发环境PyCharm

1.下载安装Python(建议下载并安装3.9.x) https://www.python.org/downloads/windows/ 要注意勾选“Add Python 3.9 to PATH”复选框,表示将Python的路径增加到环境变量中 2.安装集成开发环境Pycharm http://www.jetbrains.com/pycharm/…

《redis4.0 通信模块源码分析(一)》

【redis导读】redis作为一款高性能的内存数据库,面试服务端开发,redis是绕不开的话题,如果想提升自己的网络编程的水平和技巧,redis这款优秀的开源软件是很值得大家去分析和研究的。 笔者从大学毕业一直有分析redis源码的想法&…

开源安全一站式构建!开启企业开源治理新篇章

在如今信息技术日新月异、飞速发展的数字化时代,开源技术如同一股强劲的东风,为企业创新注入了源源不断的活力,然而,正如一枚硬币有正反两面,开源技术的广泛应用亦伴随着不容忽视的挑战。安全风险如影随形,…

DeePseek结合PS!批量处理图片的方法教程

​ ​ 今天我们来聊聊如何利用deepseek和Photoshop(PS)实现图片的批量处理。 传统上,批量修改图片尺寸、分辨率等任务往往需要编写脚本或手动处理,而现在有了AI的辅助,我们可以轻松生成PS脚本,实现自动化处…

Verilog基础(三):过程

过程(Procedures) - Always块 – 组合逻辑 (Always blocks – Combinational) 由于数字电路是由电线相连的逻辑门组成的,所以任何电路都可以表示为模块和赋值语句的某种组合. 然而,有时这不是描述电路最方便的方法. 两种always block是十分有用的: 组合逻辑: always @(…

2024年12月 Scratch 图形化(一级)真题解析 中国电子学会全国青少年软件编程等级考试

202412 Scratch 图形化(一级)真题解析 中国电子学会全国青少年软件编程等级考试 一、单选题(共25题,共50分) 第 1 题 点击下列哪个按钮,可以将红框处的程序放大?( ) A. B. C. D. 标…

C++【深入 STL--list 之 迭代器与反向迭代器】

接前面的手撕list(上)文章,由于本人对于list的了解再一次加深。本文再次对list进行深入的分析与实现。旨在再一次梳理思路,修炼代码内功。 1、list 基础架构 list底层为双向带头循环链表,问题是如何来搭建这个list类。可以进行下面的考虑&am…

如何打开vscode系统用户全局配置的settings.json

📌 settings.json 的作用 settings.json 是 Visual Studio Code(VS Code) 的用户配置文件,它存储了 编辑器的个性化设置,包括界面布局、代码格式化、扩展插件、快捷键等,是用户全局配置(影响所有…

STM32 ADC模数转换器

ADC简介 ADC(Analog-Digital Converter)模拟-数字转换器 ADC可以将引脚上连续变化的模拟电压转换为内存中存储的数字变量,建立模拟电路到数字电路的桥梁 12位逐次逼近型ADC,1us转换时间 输入电压范围:0~3.3V&#xff0…

(2025,LLM,下一 token 预测,扩散微调,L2D,推理增强,可扩展计算)从大语言模型到扩散微调

Large Language Models to Diffusion Finetuning 目录 1. 概述 2. 研究背景 3. 方法 3.1 用于 LM 微调的高斯扩散 3.2 架构 4. 主要实验结果 5. 结论 1. 概述 本文提出了一种新的微调方法——LM to Diffusion (L2D),旨在赋予预训练的大语言模型(…

学习threejs,pvr格式图片文件贴图

👨‍⚕️ 主页: gis分享者 👨‍⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍⚕️ 收录于专栏:threejs gis工程师 文章目录 一、🍀前言1.1 ☘️PVR贴图1.2 ☘️THREE.Mesh…

tkvue 入门,像写html一样写tkinter

介绍 没有官网&#xff0c;只有例子 安装 像写vue 一样写tkinter 代码 pip install tkvue作者博客 修改样式 import tkvue import tkinter.ttk as ttktkvue.configure_tk(theme"clam")class RootDialog(tkvue.Component):template """ <Top…