Gurobi基础语法之 addConstr, addConstrs, addQConstr, addMQConstr

        在新版本的 Gurobi 中,向 addConstr 这个方法中传入一个 TempConstr 对象,在模型中就会根据这个对象生成一个约束。更重要的是:TempConstr 对象可以传给所有addConstr系列方法,所以下面先介绍 TempConstr 对象

TempConstr 

        TempConstr 类的对象作为约束条件,其对象可以有以下几种形式:

1. 线性约束:x + y <= 5

2. 带上下界的线性约束:1 <= x + y <= 5

3. 二次约束:x * x + y * y <= 3

4. 用矩阵建立的线性约束:A @ x <= 1

5. 二次型约束:x @ Q @ x <= y @ A @ y

6. 带绝对值的函数的约束:x == abs_(y)

7. 带逻辑运算符的约束:x == or_(y, z)   或者   x == and_(y, z)

8. 带最大值或最小值函数的约束:x == max_(y, z)  或者  x == min_(y, z)

9. 借助 TempConstr 自定义的运算符 >> 作为表达式中的运算符:(x == 1) >> (y + z <= 5)

有以下几点值得说明:

1. Gurobi 中所有关系运算符都必须带等号,比如 <=, >=, == ,<, >, = 不合法,想要表示小于,例如 x + y < 5 这样的严格不等式约束,可以引入一个很小的值  epsilon,辅助实现严格不等式

2. 上面说的第 7 点中,要求x, y 和 z 都是二元变量,即在添加进模型的时候就设计为GRB.BINARY

3. 上面说的第 9 点中,(x == 1) >> (y + z <= 5) 表达的是,如果 x 为1,则 y + z 必须小于等于5,即 x 这个二元变量控制了后面的不等式约束是否存在

addConstr

Python定义:addConstr(constr, name='')

这个方法的第一个参数就是需要传入 TempConstr 类型的对象

addConstrs

Python定义:addConstrs(generator, name='')

        这个方法的第一个参数是 Python 语法中的生成器,也就是说可以传入一个迭代器,通过循环就可以方便的在一行代码中就生成多个约束,下面是这个方法使用的一些例子

m.addConstrs(x.sum(i, '*') <= capacity[i] for i in range(5))
m.addConstrs(x[i] + x[j] <= 1 for i in range(5) for j in range(5))
m.addConstrs(x[i]*x[i] + y[i]*y[i] <= 1 for i in range(5))
m.addConstrs(x.sum(i, '*') == [0, 2] for i in [1, 2, 4])

        约束不可能凭空产生,起码需要先添加变量,关于添加变量的方法,已经在我的另外一篇博客 addVar 和 addVars的使用 中进行了说明

        考虑到读者可能还不是很清楚 Gurobi 中 sum 方法的使用,这已经在我的另外一篇博客tupledict 中的 sum 方法 中进行了说明

        对于第三个添加的约束,实际上是添加了一个二次约束,对于二次约束,在模型的结果上有很多与线性约束不同的地方,这写不同点已经在我的另外一篇博客 带二次约束的模型解构说明中进行了说明

        如何建立起一个约束带有上下界的线性优化模型?这在我的另一篇博客中Electricity Market Optimization 探索系列(一)已经进行了说明,

addQConstr

这个方法有两个版本

版本一:addQConstr(lhs, sense=None, rhs=None, name='')

代码示例:

model.addQConstr(x*x + y*y, GRB.LESS_EQUAL, z*z, "c0")

 版本二:使用 generator 添加约束

代码示例:

model.addQConstr(x*x + y*y <= 2.0, "c1")

addMQConstr

Python 定义:addMQConstr(Q, c, sense, rhs, xQ_L=None, xQ_R=None, xc=None, name='')

实际上这里使用一个矩阵来定义二次约束,(注意可以不是二次型,而是带有交叉项的二次式)

这个二次约束形如 {x}'_{Q_{L}}Qx_{Q_{R}} + c{}'x_{c}    sense    rhs 

其中sense是一个关系运算符,rhs是一个常数 

Q = np.full((2, 3), 1)
xL = model.addMVar(2)
xR = model.addMVar(3)
model.addMQConstr(Q, None, '<', 1.0, xL, xR)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/894502.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

neo4j-community-5.26.0 create new database

1.edit neo4j.conf 把 # The name of the default database initial.dbms.default_databasehonglouneo4j # 写上自己的数据库名称 和 # Name of the service #5.0 server.windows_service_nameneo4j #4.0 dbms.default_databaseneo4j #dbms.default_databaseneo4jwind serve…

unity实现回旋镖函数

最近学习unity2D&#xff0c;想实现一个回旋镖武器&#xff0c;发出后就可以在角色周围回旋。 一、目标 1.不是一次性的&#xff0c;扔出去、返回、没有了&#xff1b;而是扔出去&#xff0c;返回到角色后方相同距离&#xff0c;再次返回&#xff1b;再次返回&#xff0c;永远…

【C++基础】字符串/字符读取函数解析

最近在学C以及STL&#xff0c;打个基础 参考&#xff1a; c中的char[] ,char* ,string三种字符串变量转化的兼容原则 c读取字符串和字符的6种函数 字符串结构 首先明确三种字符串结构的兼容关系&#xff1a;string>char*>char [] string最灵活&#xff0c;内置增删查改…

SpringBoot源码解析(九):Bean定义接口体系

SpringBoot源码系列文章 SpringBoot源码解析(一)&#xff1a;SpringApplication构造方法 SpringBoot源码解析(二)&#xff1a;引导上下文DefaultBootstrapContext SpringBoot源码解析(三)&#xff1a;启动开始阶段 SpringBoot源码解析(四)&#xff1a;解析应用参数args Sp…

C++模板编程——可变参函数模板

目录 1. 可变参函数模板基本介绍 2. 参数包展开——通过递归函数 3. 参数包展开——通过编译期间if语句(constexpr if) 4. 重载 5. 后记 进来看的小伙伴们应该对C中的模板有了一定了解&#xff0c;下面给大家介绍一下可变参函数模板。过于基础的概念将不仔细介绍。 1. 可变…

ChatGPT-4o和ChatGPT-4o mini的差异点

在人工智能领域&#xff0c;OpenAI再次引领创新潮流&#xff0c;近日正式发布了其最新模型——ChatGPT-4o及其经济实惠的小型版本ChatGPT-4o Mini。这两款模型虽同属于ChatGPT系列&#xff0c;但在性能、应用场景及成本上展现出显著的差异。本文将通过图文并茂的方式&#xff0…

2025最新源支付V7全套开源版+Mac云端+五合一云端

2025最新源支付V7全套开源版Mac云端五合一云端 官方1999元&#xff0c; 最新非网上那种功能不全带BUG开源版&#xff0c;可以自己增加授权或二开 拥有卓越的性能和丰富的功能。它采用全新轻量化的界面UI&#xff0c;让您能更方便快捷地解决知识付费和运营赞助的难题 它基于…

数据分析系列--[12] RapidMiner辨别分析(含数据集)

一、数据准备 二、导入数据 三、数据预处理 四、建模辨别分析 五、导入测试集进行辨别分析 一、数据准备 点击下载数据集 二、导入数据 三、数据预处理 四、建模辨别分析 五、导入测试集进行辨别分析 Ending, congratulations, youre done.

当卷积神经网络遇上AI编译器:TVM自动调优深度解析

从铜线到指令&#xff1a;硬件如何"消化"卷积 在深度学习的世界里&#xff0c;卷积层就像人体中的毛细血管——数量庞大且至关重要。但鲜有人知&#xff0c;一个简单的3x3卷积在CPU上的执行路径&#xff0c;堪比北京地铁线路图般复杂。 卷积的数学本质 对于输入张…

51单片机 02 独立按键

一、独立按键控制LED亮灭 轻触按键&#xff1a;相当于是一种电子开关&#xff0c;按下时开关接通&#xff0c;松开时开关断开&#xff0c;实现原理是通过轻触按键内部的金属弹片受力弹动来实现接通和断开。 #include <STC89C5xRC.H> void main() { // P20xFE;while(1){…

wax到底是什么意思

在很久很久以前&#xff0c;人类还没有诞生文字之前&#xff0c;人类就产生了语言&#xff1b;在诞生文字之前&#xff0c;人类就已经使用了语言很久很久。 没有文字之前&#xff0c;人们的语言其实是相对比较简单的&#xff0c;因为人类的生产和生活水平非常低下&#xff0c;…

SSRF 漏洞利用 Redis 实战全解析:原理、攻击与防范

目录 前言 SSRF 漏洞深度剖析 Redis&#xff1a;强大的内存数据库 Redis 产生漏洞的原因 SSRF 漏洞利用 Redis 实战步骤 准备环境 下载安装 Redis 配置漏洞环境 启动 Redis 攻击机远程连接 Redis 利用 Redis 写 Webshell 防范措施 前言 在网络安全领域&#xff0…

【周易哲学】生辰八字入门讲解(八)

&#x1f60a;你好&#xff0c;我是小航&#xff0c;一个正在变秃、变强的文艺倾年。 &#x1f514;本文讲解【周易哲学】生辰八字入门讲解&#xff0c;期待与你一同探索、学习、进步&#xff0c;一起卷起来叭&#xff01; 目录 一、六亲女命六亲星六亲宫位相互关系 男命六亲星…

大模型训练(5):Zero Redundancy Optimizer(ZeRO零冗余优化器)

0 英文缩写 Large Language Model&#xff08;LLM&#xff09;大型语言模型Data Parallelism&#xff08;DP&#xff09;数据并行Distributed Data Parallelism&#xff08;DDP&#xff09;分布式数据并行Zero Redundancy Optimizer&#xff08;ZeRO&#xff09;零冗余优化器 …

玉米苗和杂草识别分割数据集labelme格式1997张3类别

数据集格式&#xff1a;labelme格式(不包含mask文件&#xff0c;仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数)&#xff1a;1997 标注数量(json文件个数)&#xff1a;1997 标注类别数&#xff1a;3 标注类别名称:["corn","weed","Bean…

Streamlit入门

1、Streamlit是什么 Streamlit 是一个用于快速构建数据应用的开源 Python 库&#xff0c;由 Streamlit 公司开发并维护。它极大地简化了从数据脚本到交互式 Web 应用的转化过程&#xff0c;让开发者无需具备前端开发的专业知识&#xff0c;就能轻松创建出美观、实用的交互式应…

机器学习算法在网络安全中的实践

机器学习算法在网络安全中的实践 本文将深入探讨机器学习算法在网络安全领域的应用实践&#xff0c;包括基本概念、常见算法及其应用案例&#xff0c;从而帮助程序员更好地理解和应用这一领域的技术。"> 序言 网络安全一直是信息技术领域的重要议题&#xff0c;随着互联…

Rust 所有权特性详解

Rust 所有权特性详解 Rust 的所有权系统是其内存安全的核心机制之一。通过所有权规则&#xff0c;Rust 在编译时避免了常见的内存错误&#xff08;如空指针、数据竞争等&#xff09;。本文将从堆内存与栈内存、所有权规则、变量作用域、String 类型、内存分配、所有权移动、Cl…

java练习(5)

ps:题目来自力扣 给你两个 非空 的链表&#xff0c;表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的&#xff0c;并且每个节点只能存储 一位 数字。 请你将两个数相加&#xff0c;并以相同形式返回一个表示和的链表。 你可以假设除了数字 0 之外&#xff0c;这…

[EAI-023] FAST,机器人动作专用的Tokenizer,提高VLA模型的能力和训练效率

Paper Card 论文标题&#xff1a;FAST: Efficient Action Tokenization for Vision-Language-Action Models 论文作者&#xff1a;Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees, Chelsea Finn, Sergey Levine 论文链接&…