pytorch基于 Transformer 预训练模型的方法实现词嵌入(tiansz/bert-base-chinese)

以下是一个完整的词嵌入(Word Embedding)示例代码,使用 modelscope 下载 tiansz/bert-base-chinese 模型,并通过 transformers 加载模型,获取中文句子的词嵌入。

from modelscope.hub.snapshot_download import snapshot_download
from transformers import BertTokenizer, BertModel
import torch# 下载模型到本地目录
model_dir = snapshot_download('tiansz/bert-base-chinese', cache_dir='./bert-base-chinese')
print(f"模型已下载到: {model_dir}")# 本地模型路径
model_path = model_dir  # 使用下载的模型路径# 从本地加载分词器和模型
tokenizer = BertTokenizer.from_pretrained(model_path)
model = BertModel.from_pretrained(model_path)# 将模型设置为评估模式
model.eval()# 输入句子
sentence = "你好,今天天气怎么样?"# 分词并转换为模型输入格式
inputs = tokenizer(sentence, return_tensors='pt')# 获取词嵌入
with torch.no_grad():outputs = model(**inputs)# 输出的最后一层隐藏状态(即词嵌入)
last_hidden_states = outputs.last_hidden_state# 打印词嵌入的形状
print("Embeddings shape:", last_hidden_states.shape)  # [batch_size, sequence_length, hidden_size]# 获取所有 token 的文本表示
tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])# 打印每个 token 及其对应的嵌入
for i, (token, embedding) in enumerate(zip(tokens, last_hidden_states[0])):print(f"Token {i}: {token}")print(f"Embedding: {embedding[:10]}...")  # 只打印前 10 维
  1. 下载模型

    使用 modelscope 的 snapshot_download 方法下载 tiansz/bert-base-chinese 模型到本地目录 ./bert-base-chinese
  2. 加载模型

    使用 transformers 的 BertTokenizer 和 BertModel 从本地路径加载模型和分词器。
  3. 输入句子

    定义一个中文句子 "你好,今天天气怎么样?"
  4. 分词和编码

    使用分词器将句子转换为模型输入格式(包括 input_ids 和 attention_mask)。
  5. 获取词嵌入

    将输入传递给模型,获取最后一层隐藏状态(即词嵌入)。
  6. 输出结果

    打印每个 token 及其对应的嵌入向量(只打印前 10 维)。
Downloading Model to directory: ./bert-base-chinese/tiansz/bert-base-chinese
模型已下载到: ./bert-base-chinese/tiansz/bert-base-chinese
Embeddings shape: torch.Size([1, 13, 768])
Token 0: [CLS]
Embedding: tensor([ 1.0592,  0.1071,  0.4324,  0.0860,  0.9301, -0.6972,  0.7214, -0.0408,-0.1321, -0.1840])...
Token 1: 你
Embedding: tensor([ 0.2686,  0.1246,  0.4344,  0.5293,  0.7844, -0.7398,  0.4845, -0.3669,-0.6001,  0.8876])...
Token 2: 好
Embedding: tensor([ 0.9697,  0.3952,  0.6012, -0.0386,  0.6996, -0.4031,  1.0839,  0.0119,0.0551,  0.2817])...
Token 3: ,
Embedding: tensor([ 0.8255,  0.6987,  0.0310,  0.4167, -0.0159, -0.5835,  1.4922,  0.3883,0.9030, -0.1529])...
Token 4: 今
Embedding: tensor([ 0.1640,  0.2744,  0.6168,  0.0693,  1.0125, -0.4001, -0.2779,  0.6306,-0.1302, -0.0534])...
Token 5: 天
Embedding: tensor([ 0.5449, -0.1022,  0.0316, -0.4571,  0.6967,  0.0789,  0.6432,  0.0501,0.3832, -0.3269])...
Token 6: 天
Embedding: tensor([ 1.0107, -0.3673, -1.0272, -0.1893,  0.3766,  0.2341,  0.3552,  0.0228,-0.2411, -0.2227])...
Token 7: 气
Embedding: tensor([ 0.9320, -0.8562, -0.9696,  0.2202,  0.1046,  0.3335, -0.2725, -0.3014,-0.0057, -0.2503])...
Token 8: 怎
Embedding: tensor([ 0.7004, -0.3408,  0.1803, -0.0093, -0.0996,  0.9946,  0.0251,  0.0321,0.1867, -0.6998])...
Token 9: 么
Embedding: tensor([ 0.7296,  0.0704,  0.2153, -0.2680, -0.4890,  0.8920,  0.0324, -0.0820,0.5248, -0.6742])...
Token 10: 样
Embedding: tensor([ 0.2482,  0.0567,  0.2574,  0.1359,  0.4210,  0.9753,  0.2528, -0.2645,0.3426, -0.4405])...
Token 11: ?
Embedding: tensor([ 1.4162,  0.4149,  0.1098, -0.7175,  0.9875, -0.4366,  0.8482,  0.2046,0.2398, -0.1031])...
Token 12: [SEP]
Embedding: tensor([ 0.2140,  0.1362,  0.3720,  0.5722,  0.3005, -0.1858,  1.1392,  0.2413,-0.1240,  0.0177])...

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/894443.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

爬虫基础之爬取某站视频

目标网址:为了1/4螺口买小米SU7,开了一个月,它值吗?_哔哩哔哩_bilibili 本案例所使用到的模块 requests (发送HTTP请求)subprocess(执行系统命令)re (正则表达式操作)json (处理JSON数据) 需求分析: 视频的名称 F12 打开开发者工具 or 右击…

DeepSeek R1本地化部署 Ollama + Chatbox 打造最强 AI 工具

🌈 个人主页:Zfox_ 🔥 系列专栏:Linux 目录 一:🔥 Ollama 🦋 下载 Ollama🦋 选择模型🦋 运行模型🦋 使用 && 测试 二:🔥 Chat…

【linux网络(5)】传输层协议详解(下)

目录 前言1. TCP的超时重传机制2. TCP的流量控制机制3. TCP的滑动窗口机制4. TCP的拥塞控制机制5. TCP的延迟应答机制6. TCP的捎带应答机制7. 总结以及思考 前言 强烈建议先看传输层协议详解(上)后再看这篇文章. 上一篇文章讲到TCP协议为了保证可靠性而做的一些策略, 这篇文章…

DeepSeek 遭 DDoS 攻击背后:DDoS 攻击的 “千层套路” 与安全防御 “金钟罩”

当算力博弈升级为网络战争:拆解DDoS攻击背后的技术攻防战——从DeepSeek遇袭看全球网络安全新趋势 在数字化浪潮席卷全球的当下,网络已然成为人类社会运转的关键基础设施,深刻融入经济、生活、政务等各个领域。从金融交易的实时清算&#xf…

DeepSeek-R1本地部署实践

一、下载安装 --Ollama Ollama是一个开源的 LLM(大型语言模型)服务工具,用于简化在本地运行大语言模型,降低使用大语言模型的门槛,使得大模型的开发者、研究人员和爱好者能够在本地环境快速实验、管理和部署最新大语言…

【leetcode详解】T598 区间加法

598. 区间加法 II - 力扣(LeetCode) 思路分析 核心在于将问题转化, 题目不是要求最大整数本身,而是要求解最大整数的个数 结合矩阵元素的增加原理,我们将抽象问题转为可操作的方法,其实就是再找每组ops中…

【最后203篇系列】004 -Smarklink

说明 这个用来替代nginx。 最初是希望用nginx进行故障检测和负载均衡,花了很多时间,大致的结论是:nginx可以实现,但是是在商业版里。非得要找替代肯定可以搞出来,但是太麻烦了(即使是nginx本身的配置也很烦…

Ubuntu 22.04系统安装部署Kubernetes v1.29.13集群

Ubuntu 22.04系统安装部署Kubernetes v1.29.13集群 简介Kubernetes 的工作流程概述Kubernetes v1.29.13 版本Ubuntu 22.04 系统安装部署 Kubernetes v1.29.13 集群 1 环境准备1.1 集群IP规划1.2 初始化步骤(各个节点都需执行)1.2.1 主机名与IP地址解析1.…

基于SpringBoot的新闻资讯系统的设计与实现(源码+SQL脚本+LW+部署讲解等)

专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌。 技术范围:SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:…

【Linux系统】计算机世界的基石:冯诺依曼架构与操作系统设计

文章目录 一.冯诺依曼体系结构1.1 为什么体系结构中要存在内存?1.2 冯诺依曼瓶颈 二.操作系统2.1 设计目的2.2 系统调用与库函数 一.冯诺依曼体系结构 冯诺依曼体系结构(Von Neumann Architecture)是计算机的基本设计理念之一,由…

消息队列应用示例MessageQueues-STM32CubeMX-FreeRTOS《嵌入式系统设计》P343-P347

消息队列 使用信号量、事件标志组和线标志进行任务同步时,只能提供同步的时刻信息,无法在任务之间进行数据传输。要实现任务间的数据传输,一般使用两种方式: 1. 全局变量 在 RTOS 中使用全局变量时,必须保证每个任务…

【NLP251】Transformer精讲 残差链接与层归一化

精讲部分,主要是对Transformer的深度理解方便日后从底层逻辑进行创新,对于仅应用需求的小伙伴可以跳过这一部分,不影响正常学习。 1. 残差模块 何凯明在2015年提出的残差网络(ResNet),Transformer在2016年…

Android学习制作app(ESP8266-01S连接-简单制作)

一、理论 部分理论见arduino学习-CSDN博客和Android Studio安装配置_android studio gradle 配置-CSDN博客 以下直接上代码和效果视频,esp01S的收发硬件代码目前没有分享,但是可以通过另一个手机网络调试助手进行模拟。也可以直接根据我的代码进行改动…

DeepSeek Janus-Pro:多模态AI模型的突破与创新

近年来,人工智能领域取得了显著的进展,尤其是在多模态模型(Multimodal Models)方面。多模态模型能够同时处理和理解文本、图像等多种类型的数据,极大地扩展了AI的应用场景。DeepSeek(DeepSeek-V3 深度剖析:…

OpenGL学习笔记(五):Textures 纹理

文章目录 纹理坐标纹理环绕方式纹理过滤——处理纹理分辨率低的情况多级渐远纹理Mipmap——处理纹理分辨率高的情况加载与创建纹理 &#xff08; <stb_image.h> &#xff09;生成纹理应用纹理纹理单元练习1练习2练习3练习4 通过上一篇着色部分的学习&#xff0c;我们可以…

代理模式——C++实现

目录 1. 代理模式简介 2. 代码示例 1. 代理模式简介 代理模式是一种行为型模式。 代理模式的定义&#xff1a;由于某些原因需要给某对象提供一个代理以控制该对象的访问。这时&#xff0c;访问对象不适合或者不能直接访问引用目标对象&#xff0c;代理对象作为访问对象和目标…

攻防世界 fileclude

代码审计 WRONG WAY! <?php include("flag.php"); highlight_file(__FILE__);//高亮显示文件的源代码 if(isset($_GET["file1"]) && isset($_GET["file2"]))//检查file1和file2参数是否存在 {$file1 $_GET["file1"];$fi…

Vue 响应式渲染 - 列表布局和v-html

Vue 渐进式JavaScript 框架 基于Vue2的学习笔记 - Vue 响应式渲染 - 列表布局和v-html 目录 列表布局 简单渲染列表 显示索引值 点击变色 V-html 作用 注意 采用策略 应用 总结 列表布局 简单渲染列表 Data中设置状态&#xff0c;是一个数组格式的默认信息。 然后…

LLMs之OpenAI o系列:OpenAI o3-mini的简介、安装和使用方法、案例应用之详细攻略

LLMs之OpenAI o系列&#xff1a;OpenAI o3-mini的简介、安装和使用方法、案例应用之详细攻略 目录 相关文章 LLMs之o3&#xff1a;《Deliberative Alignment: Reasoning Enables Safer Language Models》翻译与解读 LLMs之OpenAI o系列&#xff1a;OpenAI o3-mini的简介、安…

AI开发学习之——PyTorch框架

PyTorch 简介 PyTorch &#xff08;Python torch&#xff09;是由 Facebook AI 研究团队开发的开源机器学习库&#xff0c;广泛应用于深度学习研究和生产。它以动态计算图和易用性著称&#xff0c;支持 GPU 加速计算&#xff0c;并提供丰富的工具和模块。 PyTorch的主要特点 …