【PyTorch】7.自动微分模块:开启神经网络 “进化之门” 的魔法钥匙

目录

1. 梯度基本计算

2. 控制梯度计算

3. 梯度计算注意

4. 小节


个人主页:Icomi

专栏地址:PyTorch入门

在深度学习蓬勃发展的当下,PyTorch 是不可或缺的工具。它作为强大的深度学习框架,为构建和训练神经网络提供了高效且灵活的平台。神经网络作为人工智能的核心技术,能够处理复杂的数据模式。通过 PyTorch,我们可以轻松搭建各类神经网络模型,实现从基础到高级的人工智能应用。接下来,就让我们一同走进 PyTorch 的世界,探索神经网络与人工智能的奥秘。本系列为PyTorch入门文章,若各位大佬想持续跟进,欢迎与我交流互关。

咱们已经见识了 PyTorch 为张量封装的众多实用计算函数,这些函数就像我们在数据处理旅程中的得力助手,帮我们解决了不少计算难题。但深度学习的探索之旅永无止境,接下来,我们要踏入一个更为关键且神奇的领域 —— 自动微分(Autograd)模块。

想象一下,我们构建的神经网络就像一台超级复杂的智能机器,它能从海量的数据中学习规律,做出精准的预测。而在这台 “智能机器” 的运行过程中,参数的调整就如同精细地调校机器的各个零部件,让它能不断优化性能。这时,自动微分(Autograd)模块就如同一位无比精准的 “调校大师”,对张量做了进一步的封装,赋予了它们一项极为强大的能力 —— 自动求导。

自动微分模块可不是一个普通的工具,它可是构成神经网络训练的必要模块,就如同发动机对于汽车的重要性一样。在神经网络的训练过程中,我们可以把它看作是一个幕后英雄,默默地推动着整个网络的优化进程。

具体来说,在神经网络的反向传播过程中,这个 “调校大师” Autograd 模块会基于正向计算的结果对当前的参数进行微分计算。这就好比在我们驾驶一辆汽车时,根据当前行驶的路线和目的地,通过精确计算来调整方向盘的角度和油门的力度。Autograd 模块通过这种微分计算,精确地算出每个参数对最终结果的影响程度,从而实现网络权重参数的更新,让神经网络能够不断学习和进步,变得越来越 “聪明”。

        接下来我们要深入学习这个自动微分(Autograd)模块,掌握它的原理和使用方法,这将为我们理解神经网络的训练机制打开一扇关键的大门。

1. 梯度基本计算

我们使用 backward 方法、grad 属性来实现梯度的计算和访问.

import torch# 1. 单标量梯度的计算
# y = x**2 + 20
def test01():# 定义需要求导的张量# 张量的值类型必须是浮点类型x = torch.tensor(10, requires_grad=True, dtype=torch.float64)# 变量经过中间运算f = x ** 2 + 20# 自动微分f.backward()# 打印 x 变量的梯度# backward 函数计算的梯度值会存储在张量的 grad 变量中print(x.grad)# 2. 单向量梯度的计算
# y = x**2 + 20
def test02():# 定义需要求导张量x = torch.tensor([10, 20, 30, 40], requires_grad=True, dtype=torch.float64)# 变量经过中间计算f1 = x ** 2 + 20# 注意:# 由于求导的结果必须是标量# 而 f 的结果是: tensor([120., 420.])# 所以, 不能直接自动微分# 需要将结果计算为标量才能进行计算f2 = f1.mean()  # f2 = 1/2 * x# 自动微分f2.backward()# 打印 x 变量的梯度print(x.grad)# 3. 多标量梯度计算
# y = x1 ** 2 + x2 ** 2 + x1*x2
def test03():# 定义需要计算梯度的张量x1 = torch.tensor(10, requires_grad=True, dtype=torch.float64)x2 = torch.tensor(20, requires_grad=True, dtype=torch.float64)# 经过中间的计算y = x1**2 + x2**2 + x1*x2# 将输出结果变为标量y = y.sum()# 自动微分y.backward()# 打印两个变量的梯度print(x1.grad, x2.grad)# 4. 多向量梯度计算
def test04():# 定义需要计算梯度的张量x1 = torch.tensor([10, 20], requires_grad=True, dtype=torch.float64)x2 = torch.tensor([30, 40], requires_grad=True, dtype=torch.float64)# 经过中间的计算y = x1 ** 2 + x2 ** 2 + x1 * x2print(y)# 将输出结果变为标量y = y.sum()# 自动微分y.backward()# 打印两个变量的梯度print(x1.grad, x2.grad)if __name__ == '__main__':test04()

2. 控制梯度计算

我们可以通过一些方法使得在 requires_grad=True 的张量在某些时候计算不进行梯度计算。

import torch# 1. 控制不计算梯度
def test01():x = torch.tensor(10, requires_grad=True, dtype=torch.float64)print(x.requires_grad)# 第一种方式: 对代码进行装饰with torch.no_grad():y = x ** 2print(y.requires_grad)# 第二种方式: 对函数进行装饰@torch.no_grad()def my_func(x):return x ** 2print(my_func(x).requires_grad)# 第三种方式torch.set_grad_enabled(False)y = x ** 2print(y.requires_grad)# 2. 注意: 累计梯度
def test02():# 定义需要求导张量x = torch.tensor([10, 20, 30, 40], requires_grad=True, dtype=torch.float64)for _ in range(3):f1 = x ** 2 + 20f2 = f1.mean()# 默认张量的 grad 属性会累计历史梯度值# 所以, 需要我们每次手动清理上次的梯度# 注意: 一开始梯度不存在, 需要做判断if x.grad is not None:x.grad.data.zero_()f2.backward()print(x.grad)# 3. 梯度下降优化最优解
def test03():# y = x**2x = torch.tensor(10, requires_grad=True, dtype=torch.float64)for _ in range(5000):# 正向计算f = x ** 2# 梯度清零if x.grad is not None:x.grad.data.zero_()# 反向传播计算梯度f.backward()# 更新参数x.data = x.data - 0.001 * x.gradprint('%.10f' % x.data)if __name__ == '__main__':test01()test02()test03()

3. 梯度计算注意

当对设置 requires_grad=True 的张量使用 numpy 函数进行转换时, 会出现如下报错:

Can't call numpy() on Tensor that requires grad. Use tensor.detach().numpy() instead.

此时, 需要先使用 detach 函数将张量进行分离, 再使用 numpy 函数.

注意: detach 之后会产生一个新的张量, 新的张量作为叶子结点,并且该张量和原来的张量共享数据, 但是分离后的张量不需要计算梯度。

import torch# 1. detach 函数用法
def test01():x = torch.tensor([10, 20], requires_grad=True, dtype=torch.float64)# Can't call numpy() on Tensor that requires grad. Use tensor.detach().numpy() instead.# print(x.numpy())  # 错误print(x.detach().numpy())  # 正确# 2. detach 前后张量共享内存
def test02():x1 = torch.tensor([10, 20], requires_grad=True, dtype=torch.float64)# x2 作为叶子结点x2 = x1.detach()# 两个张量的值一样: 140421811165776 140421811165776print(id(x1.data), id(x2.data))x2.data = torch.tensor([100, 200])print(x1)print(x2)# x2 不会自动计算梯度: Falseprint(x2.requires_grad)if __name__ == '__main__':test01()test02()

4. 小节

本小节主要讲解了 PyTorch 中非常重要的自动微分模块的使用和理解。我们对需要计算梯度的张量需要设置 requires_grad=True 属性,并且需要注意的是梯度是累计的,在每次计算梯度前需要先进行梯度清零。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/894368.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数据分析】案例04:豆瓣电影Top250的数据分析与Web网页可视化(numpy+pandas+matplotlib+flask)

豆瓣电影Top250的数据分析与Web网页可视化(numpy+pandas+matplotlib+flask) 豆瓣电影Top250官网:https://movie.douban.com/top250写在前面 实验目的:实现豆瓣电影Top250详情的数据分析与Web网页可视化。电脑系统:Windows使用软件:PyCharm、NavicatPython版本:Python 3.…

Ubuntu20.04 深度学习环境配置(持续完善)

文章目录 常用的一些命令安装 Anaconda创建conda虚拟环境查看虚拟环境大小 安装显卡驱动安装CUDA安装cuDNN官方仓库安装 cuDNN安装 cuDNN 库验证 cuDNN 安装确认 CUDA 和 cuDNN 是否匹配: TensorRT下载 TensorRT安装 TensorRT 本地仓库配置 GPG 签名密钥安装 Tensor…

元宇宙与Facebook:社交互动的未来方向

随着技术的飞速发展,元宇宙逐渐成为全球科技领域关注的焦点。作为一种集沉浸式体验、虚拟空间和数字社交互动为一体的新型平台,元宇宙正在重新定义人类的社交方式。而在这一变革中,Facebook(现改名为Meta)作为全球领先…

【赵渝强老师】K8s中Pod探针的ExecAction

在K8s集群中,当Pod处于运行状态时,kubelet通过使用探针(Probe)对容器的健康状态执行检查和诊断。K8s支持三种不同类型的探针,分别是:livenessProbe(存活探针)、readinessProbe&#…

python 语音识别

目录 一、语音识别 二、代码实践 2.1 使用vosk三方库 2.2 使用SpeechRecognition 2.3 使用Whisper 一、语音识别 今天识别了别人做的这个app,觉得虽然是个日记app 但是用来学英语也挺好的,能进行语音识别,然后矫正语法,自己说的时候 ,实在不知道怎么说可以先乱说,然…

Node.js——body-parser、防盗链、路由模块化、express-generator应用生成器

个人简介 👀个人主页: 前端杂货铺 🙋‍♂️学习方向: 主攻前端方向,正逐渐往全干发展 📃个人状态: 研发工程师,现效力于中国工业软件事业 🚀人生格言: 积跬步…

PPT演示设置:插入音频同步切换播放时长计算

PPT中插入音频&同步切换&放时长计算 一、 插入音频及音频设置二、设置页面切换和音频同步三、播放时长计算 一、 插入音频及音频设置 1.插入音频:点击菜单栏插入-音频-选择PC上的音频(已存在的音频)或者录制音频(现场录制…

3D图形学与可视化大屏:什么是材质属性,有什么作用?

一、颜色属性 漫反射颜色 漫反射颜色决定了物体表面对入射光进行漫反射后的颜色。当光线照射到物体表面时,一部分光被均匀地向各个方向散射,形成漫反射。漫反射颜色的选择会直接影响物体在光照下的外观。例如,一个红色的漫反射颜色会使物体在…

Jenkins未在第一次登录后设置用户名,第二次登录不进去怎么办?

Jenkins在第一次进行登录的时候,只需要输入Jenkins\secrets\initialAdminPassword中的密码,登录成功后,本次我们没有修改密码,就会导致后面第二次登录,Jenkins需要进行用户名和密码的验证,但是我们根本就没…

Qt常用控件 输入类控件

文章目录 1.QLineEdit1.1 常用属性1.2 常用信号1.3 例子1,录入用户信息1.4 例子2,正则验证手机号1.5 例子3,验证输入的密码1.6 例子4,显示密码 2. QTextEdit2.1 常用属性2.2 常用信号2.3 例子1,获取输入框的内容2.4 例…

有没有个性化的UML图例

绿萝小绿萝 (53****338) 2012-05-10 11:55:45 各位大虾,有没有个性化的UML图例 绿萝小绿萝 (53****338) 2012-05-10 11:56:03 例如部署图或时序图的图例 潘加宇 (35***47) 2012-05-10 12:24:31 "个性化"指的是? 你的意思使用你自己的图标&…

Go学习:字符、字符串需注意的点

Go语言与C/C语言编程有很多相似之处,但是Go语言中在声明一个字符时,数据类型与其他语言声明一个字符数据时有一点不同之处。通常,字符的数据类型为 char,例如 :声明一个字符 (字符名称为 ch) 的语句格式为 char ch&am…

本地部署 DeepSeek-R1 模型

文章目录 霸屏的AIDeepSeek是什么?安装DeepSeek安装图形化界面总结 霸屏的AI 最近在刷视频的时候,总是突然突然出现一个名叫 DeepSeek 的玩意,像这样: 这样: 这不经激起我的一顿好奇心,这 DeepSeek 到底是个…

断裂力学课程报告

谈谈你对线弹性断裂力学和弹塑性断裂力学的认识 经过对本课程的学习,我首先认识到断裂力学研究的是宏观的断裂问题,而不是研究属于断裂物理研究范围的微观结构断裂机理。断裂力学从材料内部存在缺陷出发,研究裂纹的生成、亚临界拓展&#xff…

【机器学习】自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数

一、使用pytorch框架实现逻辑回归 1. 数据部分: 首先自定义了一个简单的数据集,特征 X 是 100 个随机样本,每个样本一个特征,目标值 y 基于线性关系并添加了噪声。将 numpy 数组转换为 PyTorch 张量,方便后续在模型中…

高性能消息队列Disruptor

定义一个事件模型 之后创建一个java类来使用这个数据模型。 /* <h1>事件模型工程类&#xff0c;用于生产事件消息</h1> */ no usages public class EventMessageFactory implements EventFactory<EventMessage> { Overridepublic EventMessage newInstance(…

Java线程认识和Object的一些方法ObjectMonitor

专栏系列文章地址&#xff1a;https://blog.csdn.net/qq_26437925/article/details/145290162 本文目标&#xff1a; 要对Java线程有整体了解&#xff0c;深入认识到里面的一些方法和Object对象方法的区别。认识到Java对象的ObjectMonitor&#xff0c;这有助于后面的Synchron…

基于YOLO11的肺结节检测系统

基于YOLO11的肺结节检测系统 (价格90) LUNA16数据集 数据一共 1186张 按照8&#xff1a;1&#xff1a;1随机划分训练集&#xff08;948张&#xff09;、验证集&#xff08;118张&#xff09;与测试集&#xff08;120张&#xff09; 包含 nodule 肺结节 1种…

C++ Primer 自定义数据结构

欢迎阅读我的 【CPrimer】专栏 专栏简介&#xff1a;本专栏主要面向C初学者&#xff0c;解释C的一些基本概念和基础语言特性&#xff0c;涉及C标准库的用法&#xff0c;面向对象特性&#xff0c;泛型特性高级用法。通过使用标准库中定义的抽象设施&#xff0c;使你更加适应高级…

《AI大模型开发笔记》DeepSeek技术创新点

一、DeepSeek横空出世 DeepSeek V3 以颠覆性技术架构创新强势破局&#xff01;革命性的上下文处理机制实现长文本推理成本断崖式下降&#xff0c;综合算力需求锐减90%&#xff0c;开启高效 AI 新纪元&#xff01; 最新开源的 DeepSeek V3模型不仅以顶尖基准测试成绩比肩业界 …