玩转大语言模型——配置图数据库Neo4j(含apoc插件)并导入GraphRAG生成的知识图谱

系列文章目录

玩转大语言模型——使用langchain和Ollama本地部署大语言模型
玩转大语言模型——ollama导入huggingface下载的模型
玩转大语言模型——langchain调用ollama视觉多模态语言模型
玩转大语言模型——使用GraphRAG+Ollama构建知识图谱
玩转大语言模型——完美解决GraphRAG构建的知识图谱全为英文的问题
玩转大语言模型——配置图数据库Neo4j(含apoc插件)并导入GraphRAG生成的知识图谱
玩转大语言模型——本地部署带聊天界面deepseek R1的小白教程


文章目录

  • 系列文章目录
  • 前言
  • 安装JDK
  • 安装Neo4j
    • 下载Neo4j
    • 配置环境变量
    • 安装apoc插件
  • 导入知识图谱
    • 启动Neo4j
    • 使用Python导入知识图谱
    • 显示知识图谱


前言

在之前的文章中笔者解决了使用本地模型部署GraphRAG并生成知识图谱的过程,并且解决了原本提示词只生成英文知识图谱的问题,在本篇中,笔者将配置Neo4j图数据库并导入GraphRAG生成的知识图谱数据。以往的内容参照:玩转大语言模型——使用GraphRAG+Ollama构建知识图谱、玩转大语言模型——完美解决GraphRAG构建的知识图谱全为英文的问题。


安装JDK

Neo4j使用Java开发的,所以首先需要安装JDK。如果没有安装过JDK,需要先到官网下载安装。
官网:https://www.oracle.com/java/technologies/downloads/?er=221886#java11-windows
选择合适的版本下载
在这里插入图片描述
跟随指引安装即可。


安装Neo4j

下载Neo4j

Neo4j官网:https://neo4j.com/deployment-center/
在这里插入图片描述
下载好后是个压缩包,将其解压到你的目标安装目录即可,注意记一下解压后的地址,需要配置环境变量,笔者的地址是D:\neo4j-community-5.26.1,配置时可以做参考

配置环境变量

打开编辑环境变量,新建系统环境变量:名为NEO4J_HOME,值为D:\neo4j-community-5.26.1
在这里插入图片描述
在这里插入图片描述

修改Path变量:在其值中增加
在这里插入图片描述
双击后点新建

%NEO4J_HOME%\bin

在这里插入图片描述

安装apoc插件

导入知识图谱时,会用到apoc插件的部分功能,所以首先要安装apoc。
apoc版本地址:https://github.com/neo4j/apoc/releases?page=1

在这里插入图片描述

点击下载后放到路径:neo4j路径/plugins
在这里插入图片描述
找到路径:neo4j路径/conf下的neo4j.conf,在文件内容的末尾添加以下配置并保存。

dbms.security.procedures.unrestricted=apoc.*
dbms.security.procedures.allowlist=apoc.*
server.jvm.additional=-Dapoc.export.file.enabled=true
server.jvm.additional=-Dapoc.import.file.enabled=true
dbms.security.allow_csv_import_from_file_urls=true

neo4j路径/conf下新建一个apoc.conf文件
在文件中写入以下配置并保存。

apoc.export.file.enabled=true
apoc.import.file.use_neo4j_config=false
apoc.import.file.enabled=true
apoc.import.file.directory=D:/Neo4j/neo4j-community-5.13.0-windows/neo4j-community-5.13.0/import
apoc.export.file.directory=D:/Neo4j/neo4j-community-5.13.0-windows/neo4j-community-5.13.0/export

导入知识图谱

启动Neo4j

在命令行输入

neo4j console

之后在浏览器搜索:http://localhost:7474 进行用户创建。
初始用户名及密码都是neo4j,之后会让重置密码。
如果想持续在后台运行数据库,可以使用以下命令

neo4j start

如果neo4j start 时报错,可以执行以下命令安装service。

neo4j windows-service install 

安装成功后重新使用命令neo4j start 即可,但使用neo4j start 命令开启的服务在停止时需要调用neo4j stop停止运行

使用Python导入知识图谱

使用pip安装相关包

pip install --quiet pandas neo4j-rust-ext

不确定是由于使用的模型的问题还是GraphRAG本身的问题,实际导入的方式与官方提供的方式略有差距,主要体现在某些字段的命名上。如果笔者已经足够熟悉Neo4j可以自行修改,但如果只是想看一下知识图谱生成的效果可以参照笔者的方式修改。尽管在笔者看来,他的构建方式导入的图数据库展示效果并不会,实际上人工处理一下,自己构建会更加准确。
导入包

import time
import pandas as pd
from neo4j import GraphDatabase

设置数据库参数

GRAPHRAG_FOLDER = "ragtest/output"
NEO4J_URI = "neo4j://localhost"  # or neo4j+s://xxxx.databases.neo4j.io
NEO4J_USERNAME = "neo4j"
NEO4J_PASSWORD = "your password"
NEO4J_DATABASE = "neo4j"

实例化Neo4j driver

driver = GraphDatabase.driver(NEO4J_URI, auth=(NEO4J_USERNAME, NEO4J_PASSWORD))

构建批量导入函数

def batched_import(statement, df, batch_size=1000):"""Import a dataframe into Neo4j using a batched approach.Parameters: statement is the Cypher query to execute, df is the dataframe to import, and batch_size is the number of rows to import in each batch."""total = len(df)start_s = time.time()for start in range(0, total, batch_size):batch = df.iloc[start : min(start + batch_size, total)]result = driver.execute_query("UNWIND $rows AS value " + statement,rows=batch.to_dict("records"),database_=NEO4J_DATABASE,)print(result.summary.counters)print(f"{total} rows in {time.time() - start_s} s.")return total

创建constraints, idempotent操作

statements = ["\ncreate constraint chunk_id if not exists for (c:__Chunk__) require c.id is unique","\ncreate constraint document_id if not exists for (d:__Document__) require d.id is unique","\ncreate constraint entity_id if not exists for (c:__Community__) require c.community is unique","\ncreate constraint entity_id if not exists for (e:__Entity__) require e.id is unique","\ncreate constraint entity_title if not exists for (e:__Entity__) require e.name is unique","\ncreate constraint entity_title if not exists for (e:__Covariate__) require e.title is unique","\ncreate constraint related_id if not exists for ()-[rel:RELATED]->() require rel.id is unique","\n",
]for statement in statements:if len((statement or "").strip()) > 0:print(statement)driver.execute_query(statement)

导入create_final_documents.parquet

doc_df = pd.read_parquet(f"{GRAPHRAG_FOLDER}/create_final_documents.parquet", columns=["id", "title"]
)# Import documents
statement = """
MERGE (d:__Document__ {id:value.id})
SET d += value {.title}
"""batched_import(statement, doc_df)

导入create_final_text_units.parquet

text_df = pd.read_parquet(f"{GRAPHRAG_FOLDER}/create_final_text_units.parquet",columns=["id", "text", "n_tokens", "document_ids"],
)statement = """
MERGE (c:__Chunk__ {id:value.id})
SET c += value {.text, .n_tokens}
WITH c, value
UNWIND value.document_ids AS document
MATCH (d:__Document__ {id:document})
MERGE (c)-[:PART_OF]->(d)
"""batched_import(statement, text_df)

导入create_final_entities.parquet

entity_df = pd.read_parquet(f"{GRAPHRAG_FOLDER}/create_final_entities.parquet",columns=["title","type","description","human_readable_id","id",# "description_embedding","text_unit_ids",],
)
entity_df.rename(columns={"title": "name"}, inplace=True)entity_statement = """
MERGE (e:__Entity__ {id:value.id})
SET e += value {.human_readable_id, .description, name:replace(value.name,'"','')}
WITH e, value
CALL apoc.create.addLabels(e, case when coalesce(value.type,"") = "" then [] else [apoc.text.upperCamelCase(replace(value.type,'"',''))] end) yield node
UNWIND value.text_unit_ids AS text_unit
MATCH (c:__Chunk__ {id:text_unit})
MERGE (c)-[:HAS_ENTITY]->(e)
"""batched_import(entity_statement, entity_df)

导入create_final_relationships.parquet

rel_df = pd.read_parquet(f"{GRAPHRAG_FOLDER}/create_final_relationships.parquet",columns=["source","target","id",# "rank","weight","human_readable_id","description","text_unit_ids",],
)rel_statement = """MATCH (source:__Entity__ {name:replace(value.source,'"','')})MATCH (target:__Entity__ {name:replace(value.target,'"','')})// not necessary to merge on id as there is only one relationship per pairMERGE (source)-[rel:RELATED {id: value.id}]->(target)SET rel += value {.weight, .human_readable_id, .description, .text_unit_ids}RETURN count(*) as createdRels
"""batched_import(rel_statement, rel_df)

导入create_final_communities.parquet

community_df = pd.read_parquet(f"{GRAPHRAG_FOLDER}/create_final_communities.parquet",columns=["id", "level", "title", "text_unit_ids", "relationship_ids"],
)statement = """
MERGE (c:__Community__ {community:value.id})
SET c += value {.level, .title}
/*
UNWIND value.text_unit_ids as text_unit_id
MATCH (t:__Chunk__ {id:text_unit_id})
MERGE (c)-[:HAS_CHUNK]->(t)
WITH distinct c, value
*/
WITH *
UNWIND value.relationship_ids as rel_id
MATCH (start:__Entity__)-[:RELATED {id:rel_id}]->(end:__Entity__)
MERGE (start)-[:IN_COMMUNITY]->(c)
MERGE (end)-[:IN_COMMUNITY]->(c)
RETURn count(distinct c) as createdCommunities
"""batched_import(statement, community_df)

导入create_final_community_reports.parque

community_report_df = pd.read_parquet(f"{GRAPHRAG_FOLDER}/create_final_community_reports.parquet",columns=["id","community","level","title","summary","findings","rank","rank_explanation","full_content",],
)# Import communities
community_statement = """
MERGE (c:__Community__ {community:value.community})
SET c += value {.level, .title, .rank, .rank_explanation, .full_content, .summary}
WITH c, value
UNWIND range(0, size(value.findings)-1) AS finding_idx
WITH c, value, finding_idx, value.findings[finding_idx] as finding
MERGE (c)-[:HAS_FINDING]->(f:Finding {id:finding_idx})
SET f += finding
"""
batched_import(community_statement, community_report_df)

导入create_final_nodes.parquet

nodes_df = pd.read_parquet(f"{GRAPHRAG_FOLDER}/create_final_nodes.parquet")nodes_statement = """
MERGE (c:__Covariate__ {id:value.id})
SET c += apoc.map.clean(value, ["text_unit_id", "document_ids", "n_tokens"], [NULL, ""])
WITH c, value
MATCH (ch:__Chunk__ {id: value.text_unit_id})
MERGE (ch)-[:HAS_COVARIATE]->(c)
"""
batched_import(nodes_statement, nodes_df)

显示知识图谱

启动Neo4j后访问http://localhost:7474
在这里插入图片描述
可以看到效果还可以,不过可能由于使用的是本地模型,逻辑能力较差,所以有些实体之间的关系并没有理清,需要通过人工去做一下知识图谱的数据。不过从做数据的角度来看,如果没有知识图谱的需求,通过事件和实体查找的话应该可以找全相关的信息,只能说当前的这种方式差强人意。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/894315.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

全程Kali linux---CTFshow misc入门(25-37)

第二十五题: 提示:flag在图片下面。 直接检查CRC,检测到错误,就直接暴力破解。 暴力破解CRC的python代码。 import binascii import struct def brute_force_ihdr_crc(filename): # 读取文件二进制数据 with open(filen…

对比DeepSeek、ChatGPT和Kimi的学术写作撰写引言能力

引言 引言部分引入研究主题,明确研究背景、问题陈述,并提出研究的目的和重要性,最后,概述研究方法和论文结构。 下面我们使用DeepSeek、ChatGPT4以及Kimi辅助引言撰写。 提示词: 你现在是一名[计算机理论专家]&#…

LabVIEW微位移平台位移控制系统

本文介绍了基于LabVIEW的微位移平台位移控制系统的研究。通过设计一个闭环控制系统,针对微位移平台的通信驱动问题进行了解决,并提出了一种LabVIEW的应用方案,用于监控和控制微位移平台的位移,从而提高系统的精度和稳定性。 项目背…

javaEE-6.网络原理-http

目录 什么是http? http的工作原理: 抓包工具 fiddler的使用 HTTP请求数据: 1.首行:​编辑 2.请求头(header) 3.空行: 4.正文(body) HTTP响应数据 1.首行:​编辑 2.响应头 3.空行: 4.响应正文…

OpenCV:闭运算

目录 1. 简述 2. 用膨胀和腐蚀实现闭运算 2.1 代码示例 2.2 运行结果 3. 闭运算接口 3.1 参数详解 3.2 代码示例 3.3 运行结果 4. 闭运算的应用场景 5. 注意事项 相关阅读 OpenCV:图像的腐蚀与膨胀-CSDN博客 OpenCV:开运算-CSDN博客 1. 简述…

C++中的类与对象(下)

上一节我们将类与对象中一个比较难的也是一个比较重要的模块学习了,在这节主要是一些细节上的补充。 文章目录 目录 前言 一、初始化列表 初始化列表的性质 初始化列表的总结 二、类型转换 C中的类型转换 三、static成员 static的特点 一般情况下构造函数调用顺序&a…

Versal - 基础4(VD100+Versal IBERT)

1. 简介 在之前的一篇博文中,我分享了在 Zynq Ultrascale MPSoC 中使用 IBERT 的方法。 《Vivado - 集成眼图分析仪 Serial I/O IBERT 误码率_vivado ibert-CSDN博客》 本文进一步探讨 Versal 中使用 IBERT 的方法。 2. 硬件平台 芯片:XCVE2302-SF…

《HelloGitHub》第 106 期

兴趣是最好的老师,HelloGitHub 让你对编程感兴趣! 简介 HelloGitHub 分享 GitHub 上有趣、入门级的开源项目。 github.com/521xueweihan/HelloGitHub 这里有实战项目、入门教程、黑科技、开源书籍、大厂开源项目等,涵盖多种编程语言 Python、…

英语语法 第一天

I’m a student. 我是个学生 我是个新东方的学生 I’m a student of New Oriental School 我爱你 I love you 我在心中爱你 I love you in my heart. 这是一朵花 This is a flower 这是一朵在公园里的花 This is a flower in the park.(修饰部分在修饰词后面) 主干…

“新月之智”智能战术头盔系统(CITHS)

新月人物传记:人物传记之新月篇-CSDN博客 相关文章链接(更新): 星际战争模拟系统:新月的编程之道-CSDN博客 新月智能护甲系统CMIA--未来战场的守护者-CSDN博客 目录 一、引言 二、智能头盔控制系统概述 三、系统架…

猿人学web 19题(js逆向)

这题直接点击翻页抓包,然后获取seesion ID请求即可 求和代码 import requestssession requests.Session() cookies {sessionid:eao9i00r8pt4xu6uzzx2k01ttqn51yc9} urlhttps://match.yuanrenxue.cn/api/match/19?page sum0 for i in range(1,6):response sess…

c语言:编译和链接(详解)

前言 要将编译和链接,就不得不提及编译器是如何运作的,虽然这部分知识是针对于要创造编译器和创作语言的人所需要清楚的,但作为c语言的学习者也需要了解一下,修炼内功,尤其是对于想学习c的人而言。 编译器的运作过程…

积分和微分的区别

积分: 积分是由微小量求大量,由微观的数据求得整体的状况。运算是对总量求和。 微分: 微分是由大量求微小量,反应微观的状况,运算是伴随着求导。 峰值检测电路: 上图检测的误差主要来自与二极管的正向导通电压降&am…

OVS-DPDK

dpdk介绍及应用 DPDK介绍 DPDK(Data Plane Development Kit)是一组快速处理数据包的开发平台及接口。有intel主导开发,主要基于Linux系统,用于快速数据包处理的函 数库与驱动集合,可以极大提高数据处理性能和吞吐量&…

亚博microros小车-原生ubuntu支持系列:18 Cartographer建图

Cartographer简介 Cartographer是Google开源的一个ROS系统支持的2D和3D SLAM(simultaneous localization and mapping)库。基于图优化(多线程后端优化、cere构建的problem优化)的方法建图算法。可以结合来自多个传感器&#xff0…

安卓(android)实现注册界面【Android移动开发基础案例教程(第2版)黑马程序员】

一、实验目的(如果代码有错漏,可查看源码) 1.掌握LinearLayout、RelativeLayout、FrameLayout等布局的综合使用。 2.掌握ImageView、TextView、EditText、CheckBox、Button、RadioGroup、RadioButton、ListView、RecyclerView等控件在项目中的…

爬虫基础(四)线程 和 进程 及相关知识点

目录 一、线程和进程 (1)进程 (2)线程 (3)区别 二、串行、并发、并行 (1)串行 (2)并行 (3)并发 三、爬虫中的线程和进程 &am…

自签证书的dockerfile中from命令无法拉取镜像而docker的pull命令能拉取镜像

问题现象: docker pull images拉取镜像正常 dockerfile中的from命令拉取镜像就会报出证书错误。报错信息如下: [bjxtbwj-kvm-test-jenkins-6-243 ceshi_dockerfile]$ docker build . [] Building 0.4s (3/3) FINISHED …

计算机网络 IP 网络层 2 (重置版)

IP的简介: IP 地址是互联网协议地址(Internet Protocol Address)的简称,是分配给连接到互联网的设备的唯一标识符,用于在网络中定位和通信。 IP编制的历史阶段: 1,分类的IP地址: …

面对企业文件交换难题,镭速跨网文件交换系统是如何解决的?

在当今这个数字化快速发展的时代,企业越来越依赖于数据交换来维持其业务运作。无论是内部网络之间的沟通还是与外部合作伙伴的数据共享,高效且安全的跨网文件交换都显得尤为重要。然而,在实际操作中,许多企业面临着各种各样的挑战…