Lucene常用的字段类型lucene检索打分原理

在 Apache Lucene 中,Field 类是文档中存储数据的基础。不同类型的 Field 用于存储不同类型的数据(如文本、数字、二进制数据等)。以下是一些常用的 Field 类型及其底层存储结构:

  1. TextField

    • 用途:用于存储文本数据,并对其进行分词和索引。
    • 底层存储结构:文本数据会被分词器(Analyzer)处理,将文本分割成词项(terms)。每个词项会被存储在倒排索引(inverted index)中,映射到包含该词项的文档。
    • 示例
      import org.apache.lucene.document.Document;
      import org.apache.lucene.document.TextField;
      import org.apache.lucene.document.Field.Store;Document doc = new Document();
      doc.add(new TextField("fieldName", "This is a sample text.", Store.YES));

  2. StringField

    • 用途:用于存储不需要分词的字符串数据,如唯一标识符(ID)等。
    • 底层存储结构:字符串数据作为一个整体存储在倒排索引中,不会进行分词。
    • 示例
      import org.apache.lucene.document.Document;
      import org.apache.lucene.document.StringField;
      import org.apache.lucene.document.Field.Store;Document doc = new Document();
      doc.add(new StringField("fieldName", "unique_identifier", Store.YES));

  3. IntPoint、LongPoint、FloatPoint、DoublePoint

    • 用途:用于存储数值数据,并支持范围查询。
    • 底层存储结构:数值数据会被转换成字节数组,并按照分块(block)的方式存储,以支持高效的范围查询。
    • 示例
      import org.apache.lucene.document.Document;
      import org.apache.lucene.document.IntPoint;
      import org.apache.lucene.document.StoredField;Document doc = new Document();
      int value = 123;
      doc.add(new IntPoint("fieldName", value));
      doc.add(new StoredField("fieldName", value)); // 如果需要存储原始值

  4. StoredField

    • 用途:用于存储不需要索引的数据,仅用于检索时返回的字段。
    • 底层存储结构:数据以原始字节的形式存储在存储字段(stored field)中,不会被索引。
    • 示例
      import org.apache.lucene.document.Document;
      import org.apache.lucene.document.StoredField;Document doc = new Document();
      doc.add(new StoredField("fieldName", "This is the stored content."));

  5. BinaryField

    • 用途:用于存储二进制数据。
    • 底层存储结构:二进制数据以原始字节的形式存储在存储字段中,不会被索引。
    • 示例

      import org.apache.lucene.document.Document;
      import org.apache.lucene.document.StoredField;
      import org.apache.lucene.util.BytesRef;Document doc = new Document();
      byte[] byteArray = new byte[] {1, 2, 3, 4, 5};
      doc.add(new StoredField("fieldName", new BytesRef(byteArray)));

  6. SortedDocValuesField 和 NumericDocValuesField

    • 用途:用于存储排序和打分时需要的字段值。
    • 底层存储结构:数据以紧凑的格式存储在文档值(doc values)中,支持高效的排序和打分计算。
    • 示例
      import org.apache.lucene.document.Document;
      import org.apache.lucene.document.SortedDocValuesField;
      import org.apache.lucene.document.NumericDocValuesField;
      import org.apache.lucene.util.BytesRef;Document doc = new Document();
      doc.add(new SortedDocValuesField("fieldName", new BytesRef("sortable value")));
      doc.add(new NumericDocValuesField("numericField", 12345L));
      

lucene检索打分原理

在 Apache Lucene 中,"打分"(Scoring)是指在搜索过程中,根据文档与查询的匹配程度,为每个文档分配一个相关性分数(relevance score)。这个分数反映了文档与查询的相关性,分数越高,表示文档越相关。打分用于确定搜索结果的排序,即哪些文档应该排在前面展示给用户。

打分的基本概念

  1. 相关性分数

    • 每个文档在搜索结果中都会有一个相关性分数,数值越高,表示文档越符合查询条件。
    • 相关性分数是一个浮点数,通常在 0 到 1 之间,但也可以大于 1。
  2. TF-IDF 模型

    • Lucene 使用 TF-IDF(Term Frequency-Inverse Document Frequency)模型来计算相关性分数。
    • TF(词频):在一个文档中某个词的出现频率。词频越高,表示该词对文档的重要性越大。
    • IDF(逆文档频率):某个词在所有文档中出现的频率。文档频率越低,表示该词对区分文档的重要性越大。
  3. BM25 算法

    • BM25 是 Lucene 默认的打分算法,是 TF-IDF 的进化版本,能够更好地处理长查询和长文档。
    • BM25 考虑了词频、逆文档频率、文档长度等因素。

import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.document.StringField;
import org.apache.lucene.document.TextField;
import org.apache.lucene.index.DirectoryReader;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.queryparser.classic.QueryParser;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.search.TopDocs;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.RAMDirectory;public class LuceneScoringExample {public static void main(String[] args) throws Exception {// 创建分析器StandardAnalyzer analyzer = new StandardAnalyzer();// 创建索引Directory index = new RAMDirectory();IndexWriterConfig config = new IndexWriterConfig(analyzer);IndexWriter writer = new IndexWriter(index, config);// 添加文档addDoc(writer, "Lucene in Action", "193398817");addDoc(writer, "Lucene for Dummies", "55320055Z");addDoc(writer, "Managing Gigabytes", "55063554A");addDoc(writer, "The Art of Computer Science", "9900333X");writer.close();// 创建查询String querystr = "Lucene";// 解析查询Query query = new QueryParser("title", analyzer).parse(querystr);// 搜索int hitsPerPage = 10;IndexSearcher searcher = new IndexSearcher(DirectoryReader.open(index));TopDocs docs = searcher.search(query, hitsPerPage);ScoreDoc[] hits = docs.scoreDocs;// 显示结果System.out.println("Found " + hits.length + " hits.");for (int i = 0; i < hits.length; ++i) {int docId = hits[i].doc;Document d = searcher.doc(docId);System.out.println((i + 1) + ". " + d.get("isbn") + "\t" + d.get("title") + "\t" + hits[i].score);}}private static void addDoc(IndexWriter w, String title, String isbn) throws Exception {Document doc = new Document();doc.add(new TextField("title", title, Field.Store.YES));doc.add(new StringField("isbn", isbn, Field.Store.YES));w.addDocument(doc);}
}

 

在 Apache Lucene 中,打分(scoring)是一个动态计算的过程,相关性分数并不是预先存储在索引中的,而是根据查询和文档在搜索时实时计算的。因此,打分的值是临时的,不会永久存储在索引中。

  1. 动态计算

    • 当你执行一个查询时,Lucene 会根据查询条件和文档内容,动态计算每个匹配文档的相关性分数。
    • 这个计算过程基于查询的类型、词频(TF)、逆文档频率(IDF)、文档长度等因素。
  2. 不存储在索引中

    • 相关性分数并不会被存储在索引中。存储在索引中的信息包括倒排索引、词项频率、文档值等。
    • 每次执行查询时,Lucene 都会重新计算相关性分数,这确保了分数总是根据最新的查询条件和文档内容而更新。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/893716.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Flutter android debug 编译报错问题。插件编译报错

下面相关内容 都以 Mac 电脑为例子。 一、问题 起因&#xff1a;&#xff08;更新 Android studio 2024.2.2.13、 Flutter SDK 3.27.2&#xff09; 最近 2025年 1 月 左右&#xff0c;我更新了 Android studio 和 Flutter SDK 再运行就会出现下面的问题。当然 下面的提示只是其…

扣子平台音频功能:让声音也能“智能”起来

在数字化时代&#xff0c;音频内容的重要性不言而喻。无论是在线课程、有声读物&#xff0c;还是各种多媒体应用&#xff0c;音频都是传递信息、增强体验的关键元素。扣子平台的音频功能&#xff0c;为开发者和内容创作者提供了一个强大而灵活的工具&#xff0c;让音频的使用和…

RubyFPV开源代码之系统简介

RubyFPV开源代码之系统简介 1. 源由2. 工程架构3. 特性介绍&#xff08;软件&#xff09;3.1 特性亮点3.2 数字优势3.3 使用功能 4. DEMO推荐&#xff08;硬件&#xff09;4.1 天空端4.2 地面端4.3 按键硬件Raspberry PiRadxa 3W/E/C 5. 软件设计6. 参考资料 1. 源由 RubyFPV以…

将 OneLake 数据索引到 Elasticsearch - 第二部分

作者&#xff1a;来自 Elastic Gustavo Llermaly 及 Jeffrey Rengifo 本文分为两部分&#xff0c;第二部分介绍如何使用自定义连接器将 OneLake 数据索引并搜索到 Elastic 中。 在本文中&#xff0c;我们将利用第 1 部分中学到的知识来创建 OneLake 自定义 Elasticsearch 连接器…

PMP–一、二、三模–分类–14.敏捷

文章目录 敏捷中的角色职责与3个工件--题干关键词角色职责3个工件 高频考点分析&#xff08;一、过程&#xff1b;二、人员&#xff09;一、过程&#xff1a;1.1 变更管理&#xff1a;1.1.1 瀑布型变更&#xff08;一次交付、尽量限制、确定性需求 &#xff1e;风险储备&#x…

Vue2下篇

插槽&#xff1a; 基本插槽&#xff1a; 普通插槽&#xff1a;父组件向子组件传递静态内容。基本插槽只能有一个slot标签&#xff0c;因为这个是默认的位置&#xff0c;所以只能有一个 <!-- ParentComponent.vue --> <template> <ChildComponent> <p>…

【科研建模】Pycaret自动机器学习框架使用流程及多分类项目实战案例详解

Pycaret自动机器学习框架使用流程及项目实战案例详解 1 Pycaret介绍2 安装及版本需求3 Pycaret自动机器学习框架使用流程3.1 Setup3.2 Compare Models3.3 Analyze Model3.4 Prediction3.5 Save Model4 多分类项目实战案例详解4.1 ✅ Setup4.2 ✅ Compare Models4.3 ✅ Experime…

Linux学习笔记——网络管理命令

一、网络基础知识 TCP/IP四层模型 以太网地址&#xff08;MAC地址&#xff09;&#xff1a; 段16进制数据 IP地址&#xff1a; 子网掩码&#xff1a; 二、接口管命令 ip命令&#xff1a;字符终端&#xff0c;立即生效&#xff0c;重启配置会丢失 nmcli命令&#xff1a;字符…

手撕Diffusion系列 - 第九期 - 改进为Stable Diffusion(原理介绍)

手撕Diffusion系列 - 第九期 - 改进为Stable Diffusion&#xff08;原理介绍&#xff09; 目录 手撕Diffusion系列 - 第九期 - 改进为Stable Diffusion&#xff08;原理介绍&#xff09;DDPM 原理图Stable Diffusion 原理Stable Diffusion的原理解释Stable Diffusion 和 Diffus…

JAVAweb学习日记(八) 请数据库模型MySQL

一、MySQL数据模型 二、SQL语言 三、DDL 详细见SQL学习日记内容 四、DQL-条件查询 五、DQL-分组查询 聚合函数&#xff1a; 分组查询&#xff1a; 六、DQL-分组查询 七、分页查询 八、多表设计-一对多&一对一&多对多 一对多-外键&#xff1a; 一对一&#xff1a; 多…

微信小程序1.1 微信小程序介绍

1.1 微信小程序介绍 内容提要 1.1 什么是微信小程序 1.2 微信小程序的功能 1.3 微信小程序使用场景 1.4 微信小程序能取代App吗 1.5 微信小程序的发展历程 1.6微信小程序带来的机会

音频入门(一):音频基础知识与分类的基本流程

音频信号和图像信号在做分类时的基本流程类似&#xff0c;区别就在于预处理部分存在不同&#xff1b;本文简单介绍了下音频处理的方法&#xff0c;以及利用深度学习模型分类的基本流程。 目录 一、音频信号简介 1. 什么是音频信号 2. 音频信号长什么样 二、音频的深度学习分…

Midjourney中的强变化、弱变化、局部重绘的本质区别以及其有多逆天的功能

开篇 Midjourney中有3个图片“微调”&#xff0c;它们分别为&#xff1a; 强变化&#xff1b;弱变化&#xff1b;局部重绘&#xff1b; 在Discord里分别都是用命令唤出的&#xff0c;但如今随着AI技术的发达在类似AI可人一类的纯图形化界面中&#xff0c;我们发觉这样的逆天…

【Linux】命令为桥,存在为岸,穿越虚拟世界的哲学之道

文章目录 Linux基础入门&#xff1a;探索操作系统的内核与命令一、Linux背景与发展历史1.1 Linux的起源与发展1.2 Linux与Windows的对比 二、Linux的常用命令2.1 ls命令 - "List"&#xff08;列出文件)2.2 pwd命令 - "Print Working Directory"&#xff08…

[护网杯 2018]easy_tornado1

题目 、 依次点击文件查看 /flag.txt flag in /fllllllllllllag /welcome.txt render /hints.txt md5(cookie_secretmd5(filename)) tornado模板注入 报cookie /error?msg{{handler.settings}} cookie_secret: 6647062b-e68d-4406-90d3-06e307fa955c} 使用python脚本…

STM32+W5500+以太网应用开发+003_TCP服务器添加OLED(u8g2)显示状态

STM32W5500以太网应用开发003_TCP服务器添加OLED&#xff08;u8g2&#xff09;显示状态 实验效果3-TCP服务器OLED1 拷贝显示驱动代码1.1 拷贝源代码1.2 将源代码添加到工程1.3 修改代码优化等级1.4 添加头文件路径1.5 修改STM32CubeMX工程 2 修改源代码2.1 添加头文件2.2 main函…

基于微信小程序的英语学习交流平台设计与实现(LW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导&#xff0c;欢迎高校老师/同行前辈交流合作✌。 技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;…

ORB-SLAM2源码学习:Initializer.cc⑧: Initializer::CheckRT检验三角化结果

前言 ORB-SLAM2源码学习&#xff1a;Initializer.cc⑦: Initializer::Triangulate特征点对的三角化_cv::svd::compute-CSDN博客 经过上面的三角化我们成功得到了三维点&#xff0c;但是经过三角化成功的三维点并不一定是有效的&#xff0c;需要筛选才能作为初始化地图点。 …

macOS如何进入 Application Support 目录(cd: string not in pwd: Application)

错误信息 cd: string not in pwd: Application 表示在当前目录下找不到名为 Application Support 的目录。可能的原因如下&#xff1a; 拼写错误或路径错误&#xff1a;确保你输入的目录名称正确。目录名称是区分大小写的&#xff0c;因此请确保使用正确的大小写。正确的目录名…

记录一个连不上docker中的mysql的问题

引言 使用的debian12,不同发行版可能有些许差异&#xff0c;连接使用的工具是navicat lite 本来是毫无思绪的&#xff0c;以前在云服务器上可能是防火墙的问题&#xff0c;但是这个桌面环境我压根没有使用防火墙。 直到 ying192:~$ mysql -h127.0.0.1 -uroot ERROR 1045 (28…