Netron可视化深度学习的模型框架,大大降低了大模型的学习门槛

深度学习是机器学习的一个子领域,灵感来源于人脑的神经网络。深度学习通过多层神经网络自动提取数据中的高级特征,能够处理复杂和大量的数据,尤其在图像、语音、自然语言处理等任务中表现出色。常见的深度学习模型:

  • 卷积神经网络(CNN):专注于处理图像数据的深度学习模型,广泛应用于计算机视觉任务,如图像分类、目标检测等。

卷积神经网络模型

  • 循环神经网络(RNN)和长短期记忆网络(LSTM):用于处理序列数据(如文本、语音),擅长学习时间序列中的依赖关系。

RNN 循环神经网络模型

  • Transformer:通过自注意力机制和并行计算,在自然语言处理等任务中取得了显著突破(如 BERT、GPT 等模型)。

transformer 模型框架

学习人工智能技术依然是当下的热点,无论是谁,都需要学习人工智能技术,就像当年的电脑时代一样,每个人都需要学习了解人工智能技术。但是学习技术的门槛比较高,特别是大模型的代码让人看起来,简直就是天书一样,本来代码就长,还堆叠了 N 个模型框架,且每个输入,输出的数据形状,简直让人头疼。

好在Netron把大模型的框架都使用可视化的方式呈现了出来,从输入,到输出,数据的每个步骤的流动,以及每个节点的数据维度与当前时间节点的计算名称都详细的罗列了出来,类似卷积的操作,从输入到输出,都是一条直线下来,光看代码也比较容易清晰。

但是碰到类似的大模型,其输入,输出节点如此之多,若只看代码的话,估计整个人都懵了。若下图展现出来,再配合着代码与模型框架,再去理解模型,是不是就容易轻松了。

Netron的官网也很简洁,只需要把自己的模型训练完成的模型,上传到Netron的网站,模型框架就会自动展现出来。目前支持ONNX, TensorFlow Lite, Core ML, Keras, Caffe, Darknet, MXNet, PaddlePaddle, ncnn, MNN, TensorFlow.js, Safetensors and NumPy.

这里我们编写一段 CNN 的代码,试试Netron可视化模型的魅力,运行以下代码,然后把模型保存成 onnx格式,得到模型文件后,就可以上传到Netron网站。

import torch
import torch.nn as nn
import torch.onnx
import torch.nn.functional as F 
# 假设我们有一个简单的卷积神经网络
class SimpleCNN(nn.Module):def __init__(self):super(SimpleCNN, self).__init__()self.conv1 = nn.Conv2d(1, 6, 5)self.pool = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(6, 16, 5)self.fc1 = nn.Linear(16 * 5 * 5, 120)  # 调整全连接层的输入维度self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)def forward(self, x):x = self.pool(F.relu(self.conv1(x)))x = self.pool(F.relu(self.conv2(x)))x = x.view(-1, 16 * 5 * 5)  # 调整 view 的参数x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return x
# 创建模型实例
model = SimpleCNN()
# 设置模型为评估模式
model.eval()
# 创建一个示例输入张量
dummy_input = torch.randn(1, 1, 32, 32)  # 示例输入尺寸 (batch_size, channels, height, width)
# 导出模型
torch.onnx.export(model,               # 要导出的模型dummy_input,         # 模型的示例输入"simple_cnn.onnx",   # 输出文件名export_params=True,  # 是否导出参数opset_version=11,    # ONNX 的版本do_constant_folding=True,  # 是否执行常量折叠优化input_names=['input'],    # 输入节点名称output_names=['output'],  # 输出节点名称dynamic_axes={'input': {0: 'batch_size'},  # 动态轴'output': {0: 'batch_size'}})print("模型已成功导出为 ONNX 格式!")
'''
SimpleCNN 类继承自 nn.Module,这是所有 PyTorch 网络模型的基础类。
__init__ 方法中定义了网络的结构:
self.conv1:第一个卷积层,输入通道数为 1,输出通道数为 6,卷积核大小为 5x5。
self.pool:最大池化层,池化窗口大小为 2x2,步长为 2。
self.conv2:第二个卷积层,输入通道数为 6,输出通道数为 16,卷积核大小为 5x5。
self.fc1:第一个全连接层,输入维度为 16 * 5 * 5,输出维度为 120。
self.fc2:第二个全连接层,输入维度为 120,输出维度为 84。
self.fc3:输出层,输入维度为 84,输出维度为 10(假设是 10 类分类任务)。forward 方法定义了数据在模型中的流动方式:
x = self.pool(F.relu(self.conv1(x))):对输入 x 进行第一层卷积操作,然后应用 ReLU 激活函数,再进行最大池化。
x = self.pool(F.relu(self.conv2(x))):对上一步的结果进行第二层卷积操作,同样应用 ReLU 激活函数,再进行最大池化。
x = x.view(-1, 16 * 5 * 5):将多维张量展平成一维张量,以便可以输入到全连接层。这里 -1 表示自动计算批量大小,16 * 5 * 5 是展平后的特征数量。
x = F.relu(self.fc1(x)):通过第一个全连接层,并应用 ReLU 激活函数。
x = F.relu(self.fc2(x)):通过第二个全连接层,并应用 ReLU 激活函数。
x = self.fc3(x):通过输出层,得到最终的输出。
'''

Netron展示了每个节点的计算过程以及名称,当然模型的每个步骤的数据维度,也清晰的展示了出来,这样我们学习大模型时,可以根据模型框架以及可视化过程来解析代码的执行过程,也可以通过可视化的模型框架,来学习数据的流向,以及 debug 模型。

https://github.com/lutzroeder/netron
https://netron.app/更多transformer,VIT,swin tranformer
参考头条号:人工智能研究所
V:启示AI科技

 动画详解transformer  在线教程 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/892110.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Robot---奇思妙想轮足机器人

1 背景 传统机器人有足式、轮式、履带式三种移动方式,每种移动方式都有各自的优缺点。轮式机器人依靠车轮在地面上移动,能源利用率高、移动速度快,但是仅以轮子与地面接触,缺乏越障能力和对复杂地形的适应能力,尤其面对…

用JAVA编写一个简单的小游戏

用Java语言编写一个简单的小游戏。这里是一个非常基础的猜数字小游戏的代码示例。在这个游戏中,程序会随机选择一个1到100之间的整数,玩家需要猜测这个数字是什么。每次猜测后,程序会告诉玩家他们猜的数字是太高了、太低了还是正确。 impor…

加速科技荣获“浙江省企业研究院”认定

近日,浙江省经济和信息化厅公布“2024年认定(备案)省级企业研发机构名单”。经过多轮严格评审和公示,加速科技荣获“省企业研究院”认定。这是加速科技继获国家级专精特新“小巨人”企业认定荣誉后的又一里程碑。 “浙江省企业研究…

MySQL使用navicat新增触发器

找到要新增触发器的表,然后点击设计,找到触发器标签。 根据实际需要,填写相关内容,操作完毕,点击保存按钮。 在右侧的预览界面,可以看到新生成的触发器脚本

性能测试05|JMeter:分布式、报告、并发数计算、性能监控

目录 一、JMeter分布式 1、应用场景 2、原理 3、分布式相关注意事项 4、分布式配置与运行 二、JMeter报告 1、聚合报告 2、HTML报告 三、并发用户数(线程数)计算 四、JMeter下载第三方插件 五、性能监控 1、Concurrency Thread Group 线程组…

(已开源-AAAI25) RCTrans:雷达相机融合3D目标检测模型

在雷达相机融合三维目标检测中,雷达点云稀疏、噪声较大,在相机雷达融合过程中提出了很多挑战。为了解决这个问题,我们引入了一种新的基于query的检测方法 Radar-Camera Transformer (RCTrans)。具体来说: 首先设计了一个雷达稠密…

Python----Python爬虫(利用bs4、pyquery、xpath爬取电影名和评分)

电影网址电影大全_好看的电影_最新好看的电影_电影排行榜-影视快搜 一、bs4 import requests from fake_useragent import UserAgent from bs4 import BeautifulSoup # 设置URL地址 urlhttp://kan.znds.com/movie/ # 设置请求头 headers{User-Agent:UserAgent().edge} # 发送…

Hbuilder ios 离线打包sdk版本4.36,HbuilderX 4.36生成打包资源 问题记录

1、打包文档地址https://nativesupport.dcloud.net.cn/AppDocs/usesdk/ios.html#%E9%85%8D%E7%BD%AE%E5%BA%94%E7%94%A8%E7%89%88%E6%9C%AC%E5%8F%B7 2、配置应用图标 如果没有appicon文件,此时找到 Assets.xcassets 或者 Images.xcassets(看你sdk引入的启动文件中…

TCP通信原理学习

TCP三次握手和四次挥手以及为什么_哔哩哔哩_bilibili

unity学习13:gameobject的组件component以及tag, layer 归类

目录 1 gameobject component 是unity的基础 1.1 类比 1.2 为什么要这么设计? 2 从空物体开始 2.1 创建2个物体 2.2 给 empty gameobject添加组件 3 各种组件和新建组件 3.1 点击 add component可以添加各种组件 3.2 新建组件 3.3 组件的操作 3.4 特别的…

MYSQL--------什么是存储过程和函数

什么是存储过程和函数 存储过程: 存储过程是一组预编译的 SQL 语句集合,存储在数据库服务器中,可通过名称调用执行。它可以包含数据操作语言(DML)、数据定义语言(DDL)、控制流语句等。存储过程主…

计算机网络 (30)多协议标签交换MPLS

前言 多协议标签交换(Multi-Protocol Label Switching,MPLS)是一种在开放的通信网上利用标签引导数据高速、高效传输的新技术。 一、基本概念 MPLS是一种第三代网络架构技术,旨在提供高速、可靠的IP骨干网络交换。它通过将IP地址映…

探索Facebook的区块链计划:未来社交网络的变革

随着区块链技术的迅速发展,社交网络领域正面临一场深刻的变革。Facebook,作为全球最大且最具影响力的社交平台之一,正在积极探索区块链技术的应用。本文将深入探讨Facebook的区块链计划,分析其潜在的变革性影响,并展望…

十年后LabVIEW编程知识是否会过时?

在考虑LabVIEW编程知识在未来十年内的有效性时,我们可以从几个角度进行分析: ​ 1. 技术发展与软件更新 随着技术的快速发展,许多编程工具和平台不断更新和改进,LabVIEW也不例外。十年后,可能会有新的编程语言或平台…

C# async和await

第一种: 多个异步任务按照顺序执行先让一个异步任务start 然后通过ContinueWith方法 在参数函数的表达式里面开启第二个任务如果要有第三个任务 需要在第二个任务ContinueWith方法中开启第三个任务 以此类推 可以实现多个异步任务顺序执行 上面这种方式绘出现地狱回…

Excel 技巧03 - 如何对齐小数位数? (★)如何去掉小数点?如何不四舍五入去掉小数点?

这几个有点儿关联,我都给放到一起了,不影响大家分别使用。 目录 1,如何对齐小数位数? 2,如何去掉小数点? 3,如何不四舍五入去掉小数点? 1,如何对齐小数位数&#xff…

node.js|浏览器插件|Open-Multiple-URLs的部署和使用,实现一键打开多个URL的强大工具

前言: 在整理各类资源的时候,可能会面临资源非常多的情况,这个时候我们就需要一款能够一键打开多个URL的浏览器插件了 说简单点,其实,迅雷就是这样的,但是迅雷是基于内置nginx浏览器实现的,并…

“AI 视频图像识别系统,开启智能新视界

咱老百姓现在的生活啊,那是越来越离不开高科技了,就说这 AI 视频图像识别系统,听起来挺高大上,实际上已经悄无声息地融入到咱们日常的方方面面,给咱带来了超多便利。 先讲讲安防领域吧,这可是 AI 图像识别的…

C语言 游动的小球

代码如下&#xff1a; 在这里插入代码片#include<stdio.h> #include<stdlib.h> #include<windows.h>int main() {int i,j;int x 5;int y 10;int height 20;int velocity_x 1;int velocity_y 1;int left 0;int right 20;int top 0;int bottom 10;while(1){…

基于SpringBoot实现的保障性住房管理系统

&#x1f942;(❁◡❁)您的点赞&#x1f44d;➕评论&#x1f4dd;➕收藏⭐是作者创作的最大动力&#x1f91e; &#x1f496;&#x1f4d5;&#x1f389;&#x1f525; 支持我&#xff1a;点赞&#x1f44d;收藏⭐️留言&#x1f4dd;欢迎留言讨论 &#x1f525;&#x1f525;&…