【优选算法 分治】深入理解分治算法:分治算法入门小专题详解

        

 


快速排序算法 


    (1) 快速排序法      



    (2) 快排前后指针     



    (3) 快排挖坑法    



颜色分类


    题目解析   



    算法原理     


算法原理和移动零非常相似


    简述移动零的算法原理    

  • cur 在从前往后扫描的过程中,如果扫描的数符合 f 性质,就把这个数放到 dest 之前的区域;
  • 符合 g 性质则不管,知道 cur 遍历到最后,dest 指针就可以把数组划分成两个部分; 

    解法:三指针     


当 i 遍历结束数组后,整个数组就被排好序了,并且数组以 left,right 两个指针为分界线分成三个部分;


  在遍历的过程中,整个数组会被划分成四个部分:


     对遍历到的 nums[ i ] 的不同元素的分类处理    



    nums[ i ] = 0     


对于上面这种情况,我们只需要 swap( nums[ left + 1] , nums [ i ] ) left++,i ++ 即可,要注意nums[left+1]=1 ;


但是有一种极端情况,就是如果 i = left + 1,并且也符合 nums[ i ] = 0 的情况,我们依旧要执行 swap( nums[ left + 1] , nums [ i ] );

虽然这种极端情况是变成自己和自己交换,但是处理方法不变:交换完成后,left ++ , i ++; 


    nums[ i ] = 1     


此时我们令 i ++ 即可;


    nums[ i ] = 2     


 对于这种情况,我们可以 swap( nums[ i ] , nums[ right - 1 ] ) ,然后 right-- ;


此时需要特别注意,swap( nums[ i ] , nums[ right - 1 ] ) 后,i 是不可以 ++ 的,因为 [ i ,right-1 ] 是待扫描区域,交换后,nums[ i ] 依旧是待扫描元素,所以 i 如果是和 right -1交换的情况,i 是一定不可以++的


    处理细节问题    


    循环终止条件     


当待扫描区域已经没有元素,说明此时数组所有元素已经全部被扫描并且分好类了,结束循环即可,所以循环终止条件是 i != right;


    指针初始化     


根据我们上面的算法原理,为了保证 left 指向 0 区域的最右边, right 区域指向 2 区域的最左边,我们交换元素是不会让 nums[ left ] ,nums[ right ] 亲自和 nums[ i ] 进行交换的: 


所以我们的指针初始化的值如下:

 这样的操作是为了避免漏掉对 nums[ 0 ] ,nums [ n - 1 ] 的扫描;


    编写代码    


    报错原因     

  • 交换元素的方法不对;
  • 并且初始化 left,和 right 的操作没有处理好,会漏掉对 nums[ 0 ] ,nums [ n - 1 ] 的扫描


使用快速排序来排序数组


    题目解析   



    算法原理     


    解法:原始快速排序   


     原始快速排序    


而原始快速排序的方法最核心的步骤,就在于根据基准元素进行数据划分的过程,这个步骤的名字是 partation; 


但是,如果使用快速排序的数组有重复元素,那么快排的时间复杂度就会退化: 


    解法:用" 数组分三块 " 的思想实现快速排序    


这是基于原始快速排序的优化策略,用于应对快速排序的数组有大量重复元素的情况,从对数组分成两块划分为分成三块: 

在数组出现大量重复元素时,通过把数组分成三段,可以把时间复杂度从 O(N^2) 降到 O(N);


    分类讨论     


 我们通过递归不断对划分的小区域排序,最终得到排好序的数组;


    优化:用随机的方式选择基准元素    


如果要想让快排的时间复杂度趋于 O(N* logN) ,就需要随机地选择基准元素;

 随机选择基准元素,就是给我们一个数组,我们要等概率地返回区间上的任意一个数;


如何随机地选择一个基准元素呢? 


    编写代码    


    准备工作    


传入要排序的左区间和右区间:

如果 L >= R,则说明排序的区间要么只有一个,要么这个区间没有元素,说明整个数组已经排序完毕;  


    随机生成基准元素 & 初始化下标    


要记一下如何生成随机数下标,以及要特别注意这里的初始化 left != -1 ,right != nums.length:



    把数组分三块     



[ left + 1 , right - 1 ] 这块区域用于存与生成的随机基准元素值相同的元素并且以这块区域为基准,把其他数组元素分到这三块区域对应的区域;

可以记一下这个 partation 的过程,这是快排的核心逻辑;


     [ L , left ] & [ right , R ] 进行排序    


根据 nums[ i ] 与 key 的大小关系,把所有元素放到 [ left + 1 , right - 1 ] 的两边(两边还是乱序的),再对两边区域进行递归排序即可; 


快速选择算法 


数组中的第K个最大元素


    题目解析   



    算法原理     



    解法:基于快排实现快速选择算法   


     快速排序 Partation   


本题是要找出数组中第 K 大的元素 KthLarges,那么我们可以根据基准元素,来判断 KthLarges 是落在上面三个区域的哪一个区域,然后对这个区域进行继续进行 Partation,继续找 KthLarges;


   根据 K 的值分情况讨论,确定 KthLarges 的区间位置    


我们先分别设三个区间的元素个数: 



    处理细节问题    



我们解释一下这种情况: 


    编写代码    


    先根据快排 partation 原理,把数组分三块    



    根据 k 的值来决定递归三块中的哪一块区域     



最小的k个数


    题目解析   



    算法原理     


    解法一:直接排序   


时间复杂度 O( N * logN)  


    解法二:使用大根堆( 求最小的前K个数)   


时间复杂度 O( N * logK ) 


    解法三:快速选择算法   


时间复杂度趋于 O( N ) ,因为是随机选择基准元素,步骤如下:


    对 K 的值分类讨论     



     (1) a > k    



     (2) b >= k    


这种情况我们直接返回前面两个区域的前 k 个小的元素即可,不用关心 [ L , right ] 区间的顺序;


     (3) k > b+c    



通过这三种情况,我们就能明显的感受到快速选择排序是最优的解法;

比如第三种情况,此时[ L ,right ] 区间是没有排序的,但是我们依旧已经找到了最小的 k 个元素的一部分;而其他两种情况都是要对数组的每一个元素进行排序;


    编写代码    


我们是对 nums 的前 k个元素进行排序,把然后把 nums 的前 k 个元素赋值个 ret,然后返回;


 ​​​​报错原因:粗心导致 left & right 指针的初始值写错了



归并排序 


  1. 当数组块被分成每一块都只有一个元素,分块结束;
  2. 用双指针合并两个有序数组;
  3. 归并排序的决策树非常像二叉树的后续遍历( 左右根 ),而快排则类似前序遍历(先对数组整体粗糙分一遍,再去两边区域细分);

使用归并排序来排序数组


    题目解析   


    编写代码    


 


    优化:辅助数组设置为全局变量     


把 tmp 设置为全局,就不用在每次递归时,创建一个新的 tmp ,减少时间开销; 


    int[] nums, tmp ;public int[] sortArray(int[] _nums) {nums = _nums;tmp = new int[nums.length]; mergeSort(0, nums.length - 1);return nums;}public void mergeSort(int left ,int right){if(left >= right) return;int mid = (left + right) / 2;mergeSort(left , mid);mergeSort(mid + 1 , right);int cur1 = left; int cur2 = mid + 1; int i = 0 ; while(cur1 <= mid && cur2 <= right){tmp[i++] = nums[cur1] <= nums[cur2] ? nums[cur1++] : nums[cur2++] ; }while(cur1 <= mid) tmp[i++] = nums[cur1++];while(cur2 <= right) tmp[i++] = nums[cur2++];for(int j = left ; j <= right ; j++ ) nums[j] = tmp[j - left]; }


数组中的逆序对


    题目解析   



    算法原理     


    解法一:暴力枚举   


固定其中一个数,在这个数后面区间找比这个数小的数,来构成一个逆序对; 使用两层 for 循环即可,但是会超时;


    解法二:归并排序   


    算法原理    



    (1) 左半部分 + 右半部分 +  一左一右     


 本质还是暴力枚举,逆序对个数 = a + b + c 


    (2) 左半部分 + 左排序 + 右半部分 + 右排序 + 一左一右 + 排序     


对左右两边排好序,再一左一右挑数组成逆序对,并不影响结果:


     本题为什么可以利用归并排序解决问题?     



并且通过这步操作,我们得出本题最终的解法,就是需要通过归并排序求逆序对个数;  

我们在找出左右两边的逆序对个数时,先对两边排序再一左一右,会非常快:


    一左一右查找逆序对策略优化     


我们在之前找左右两边区域的所有逆序对时,就刻意地对左右两边进行排序,找完左右两边的逆序对时,nums 的两边区域的顺序已经被排序成升序,此时我们需要一左一右寻找逆序对


    策略一 : 判断 nums[cur1]>nums[cur2]  + 升序      


    统计一左一右逆序对的固定策略    


固定 cur2,  只要 cur1 一移动到 nums[cur1]>nums[cur2]位置,就统计符合要求的区间的元素个数,cur2++;


假设我们固定 cur2,要在左边找有多少个比 nums[ cur2 ] 大的元素

令 cur1 在左边区域中从左到右扫描,找出第一个 nums[ cur1 ] > nums[ cur2 ] 的 cur1  


    (1) nums[ cur1 ] <= nums[ cur2 ]     


我们直接让 cur1++ ,并且为了让数组有序,我们要把 nums[cur1] 放入辅助数组中,方便后续排序,继续往后找即可:


    (2) nums[ cur1 ] > nums[ cur2 ]      


出现这种情况,对于两边升序区域,当 nums[ cur1 ] > nums[ cur2 ] ,说明此时 cur1 指向的元素,是左边区域第一个比 nums[ cur2 ] 大的元素;cur1 后面所有元素都比 nums[ cur2 ] 大

也因为是升序排序,在 cur1 一走到第一个合法位置时, ret += mid - cur1 + 1即可;

本轮 cur2 的所有能拿到的逆序对就已经统计好了,此时 cur2++ 即可;


    如果策略一使用降序排列会出现的问题    


对于降序排序,我们依旧是需要固定 cur2;

我们依旧需要采取【 只要 cur1 一移动到 nums[cur1]>nums[cur2] 的位置,就统计符合这个要求的区间的元素个数】的策略


如下图的情况:

因为是降序排序的,所以 cur2 不能因为 nums[cur1]>nums[cur2]  就马上++ ,还必须看下一个 cur1 能否满足  nums[cur1]>nums[cur2] :

因为采取了【 只要 cur1 一移动到 nums[cur1]>nums[cur2] 的位置,就统计符合这个要求的区间的元素个数】的策略,因此就会造成大量的重复计算;


cur1 一移动,判断是否大于 cur2,如果判断成立,马上就让 ret += cur1 - left +1,所以会出现多次重复计算;

所以使用策略一,在排序数组时不能用降序,避免大量重复计数,所以只能用升序;


    策略二 : nums[cur1]<nums[cur2]  + 降序      


    统计一左一右逆序对的固定策略     


固定 cur2,  只要 cur1 一移动到 nums[cur1]<nums[cur2]位置,就统计符合要求的区间的元素个数,cur2++;



    编写代码    


    策略一 + 升序     


    准备工作    


    主逻辑    


    策略二 + 降序      




计算右侧小于当前元素的个数


    题目解析   



    算法原理     


这道题的本质,还是类似于求逆序对的个数; 


    解法:归并排序(左半部分 + 左排序 + 右半部分 + 右排序 + 一左一右 + 排序)   


    一左一右策略:nums[ cur1 ] < nums[ cur2 ] + 降序(上一题策略二)    


  • nums[ cur1] <= nums[ cur2 ] ,cur2++;修改对应的辅助数组;
  • nums[ cur1 ] > nums[ cur2 ],把 nums[ cur1 ] 对应 ret[ ] 下标的元素加上 right - cur2 + 1; 修改对应的辅助数组;

    处理细节问题    


我们要找到 nums[ cur1 ] 对应 ret[ ] 的对应下标 ,因为我们排序的时候,下标已经乱了;


如果我们使用哈希表来设置 < nums 元素 ,  ret 下标 > 的映射,如果 nums有重复元素,哈希表无法存储重复元素,就无法解决下标混乱的问题


所以我们设置与 nums 同等规模的数组 index[ ],表示 nums 未排序时元素的原始下标,


不管 nums 因为排序,里面的元素怎么移动,index 对应的元素绑定移动

那如何让 nums[] 和 index[] 绑定移动呢?我们需要创建两个辅助数组 tmp,来让它们同步移动;

最后,让 ret [ index[ i ] ] +=  right - cur2 + 1 即可;


    编写代码    


    准备工作    



     核心逻辑    


报错原因:对于降序排序的一左一右操作不熟练,判断条件写错了 ;



翻转对


拓展 


     直接插入排序    



     选择排序     



    冒泡排序     



 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/891991.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【前端系列01】优化axios响应拦截器

文章目录 一、前言&#x1f680;&#x1f680;&#x1f680;二、axios响应拦截器&#xff1a;☀️☀️☀️2.1 为什么前端需要响应拦截器element ui的消息组件 一、前言&#x1f680;&#x1f680;&#x1f680; ☀️ 回报不在行动之后&#xff0c;回报在行动之中。 这个系列可…

Requests聚焦爬虫-数据解析

原理:定位到对应标签,获取标签内的东西 解析三种方法: 1:正则 58二手房。获取图片列表,二进制content。展开,每个图片是一个内容,正则从头取到尾,不同之处用 .*? 替换掉。 import requests import re import os if __name__ == "__main__":# url=https://…

性能测试工具的原理与架构解析

&#x1f345; 点击文末小卡片&#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 在软件开发与运维领域&#xff0c;性能测试是确保系统稳定、高效运行的关键环节。性能测试工具作为实现这一目标的重要工具&#xff0c;通过模拟真实用户行为和负载…

【insert 插入数据语法合集】.NET开源ORM框架 SqlSugar 系列

系列文章目录 &#x1f380;&#x1f380;&#x1f380; .NET开源 ORM 框架 SqlSugar 系列 &#x1f380;&#x1f380;&#x1f380; 文章目录 系列文章目录一、前言 &#x1f343;二、插入方式 &#x1f4af;2.1 单条插入实体2.2 批量 插入实体2.3 根据字典插入2.4 根据 Dat…

记一次k8s下容器启动失败,容器无日志问题排查

问题 背景 本地开发时&#xff0c;某应用增加logback-spring.xml配置文件&#xff0c;加入必要的依赖&#xff1a; <dependency><groupId>net.logstash.logback</groupId><artifactId>logstash-logback-encoder</artifactId><version>8…

【PPTist】批注、选择窗格

前言&#xff1a;本篇文章研究批注和选择窗格两个小功能 一、批注 批注功能就是介个小图标 点击可以为当前页的幻灯片添加批注&#xff0c;还能删除之前的批注 如果我们增加了登录功能&#xff0c;还可以在批注上显示当前的用户名和头像&#xff0c;不过现在是写死的。 左侧…

使用Paddledetection进行模型训练【Part1:环境配置】

目录 写作目的 安装文档 环境要求 版本依赖关系 安装说明 写作目的 方便大家进行模型训练前的环境配置。 安装文档 环境要求 PaddlePaddle &#xff1e;&#xff1d;2.3.2OS 64位操作系统Python 3(3.5.1/3.6/3.7/3.8/3.9/3.10)&#xff0c;64位版本pip/pip3(9.0.1)&am…

C++ scanf

1.scanf概念解释&#xff1a; C语言兼容C语言中的基本语句语法,scanf语句是C语言中的输入语句,在C语言环境中也可以使用。对于大数据的输入使用scanf比C的输入cin效率高、速度快。 scanf称为格式输入函数,其关键字最末一个字母f即为是格式"(format)之意",其意义是按指…

数学建模入门——描述性统计分析

摘要&#xff1a;本篇博客主要讲解了数学建模入门的描述性统计分析&#xff0c;包括基本统计量的计算、数据的分布形态、数据可视化和相关性分析。 往期回顾&#xff1a; 数学建模入门——建模流程-CSDN博客 数学建模入门——数据预处理&#xff08;全&#xff09;-CSDN博客 …

30、论文阅读:基于小波的傅里叶信息交互与频率扩散调整的水下图像恢复

Wavelet-based Fourier Information Interaction with Frequency Diffusion Adjustment for Underwater Image Restoration 摘要介绍相关工作水下图像增强扩散模型 论文方法整体架构离散小波变换与傅里叶变换频率初步增强Wide Transformer BlockSpatial-Frequency Fusion Block…

Zero to JupyterHub with Kubernetes 下篇 - Jupyterhub on k8s

前言&#xff1a;纯个人记录使用。 搭建 Zero to JupyterHub with Kubernetes 上篇 - Kubernetes 离线二进制部署。搭建 Zero to JupyterHub with Kubernetes 中篇 - Kubernetes 常规使用记录。搭建 Zero to JupyterHub with Kubernetes 下篇 - Jupyterhub on k8s。 官方文档…

Matlab回归预测大合集(不定期更新)-188

截至2025-1-2更新 1.BP神经网络多元回归预测&#xff08;多输入单输出&#xff09; 2.RBF神经网络多元回归预测&#xff08;多输入单输出&#xff09; 3.RF随机森林多元回归预测&#xff08;多输入单输出&#xff09; 4.CNN卷积神经网络多元回归预测&#xff08;多输入单输…

【读书与思考】历史是一个好东西

【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】【读书与思考】 导言 以后《AI日记》专栏我想专注于 AI 相关的学习、成长和工作等。而与 AI 无关的一些读书、思考和闲聊&#xff0c;我打算写到这里&#xff0c;我会尽量控制自己少想和少写。 下图的一些感想…

Git使用mirror备份和恢复

Git使用mirror备份和恢复 使用到的命令总结备份1.进入指定代码仓库&#xff0c;拷贝地址2.进入要备份到的文件夹&#xff0c;右键打开git命令行&#xff0c;输入以下命令3.命令执行完成后会生成一个新文件夹 恢复1.在gitee上创建代码仓库![请添加图片描述](https://i-blog.csdn…

人工智能的可解释性:从黑箱到透明

✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连✨ ​​ ​ 人工智能&#xff08;AI&#xff09;的快速发展和广泛应用&#xff0c;带来了许多革新的成果&#xff0c;但也引发了对其透明性和可解释…

Nacos注册中心介绍及部署

文章目录 Nacos注册中心介绍及部署1. 注册中心简介2. 注册中心原理3. Nacos部署-基于Docker3.1 Nacos官网下载3.2 基础数据信息3.3 环境信息3.4 docker安装部署3.5 测试3.5 测试 Nacos注册中心介绍及部署 1. 注册中心简介 Spring Cloud注册中心是Spring Cloud微服务架构中的一…

Nginx与frp结合实现局域网和公网的双重https服务

背景&#xff1a; 因为局域网内架设了 tiddlywiki、 Nextcloud 等服务&#xff0c;同时也把公司的网站架设在了本地&#xff0c;为了实现局域网直接在局域网内访问&#xff0c;而外部访问通过frps服务器作为反向代理的目的&#xff0c;才有此内容。 实现的效果如下图琐事 不喜欢…

zephyr移植到STM32

Zephy如何移植到单片机 1. Window下搭建开发环境1.1 安装Choncolatey1.2 安装相关依赖1.3创建虚拟python环境1.4 安装west1.4.1 使用 pip 安装 west1.4.2 检查 west 安装路径1.4.3 将 Scripts路径添加到环境变量1.4.4 验证安装 1.5 获取zephyr源码和[安装python](https://so.cs…

【分糖果——DFS】

题目 代码1 #include <bits/stdc.h> using namespace std; set<string> s; void dfs(int num1, int num2, int u, string ans) {if (u 7){if (num1 num2 > 5)return;ans (char)((num1) * 17 num2);s.insert(ans);return;}for (int i 0; i < num1; i){f…

【HarmonyOS】鸿蒙应用实现屏幕录制详解和源码

【HarmonyOS】鸿蒙应用实现屏幕录制详解和源码 一、前言 官方文档关于屏幕录制的API和示例介绍获取简单和突兀。使用起来会让上手程度变高。所以特意开篇文章&#xff0c;讲解屏幕录制的使用。官方文档参见&#xff1a;使用AVScreenCaptureRecorder录屏写文件(ArkTS) 二、方…