Zero to JupyterHub with Kubernetes 下篇 - Jupyterhub on k8s

前言:纯个人记录使用。

  • 搭建 Zero to JupyterHub with Kubernetes 上篇 - Kubernetes 离线二进制部署。
  • 搭建 Zero to JupyterHub with Kubernetes 中篇 - Kubernetes 常规使用记录。
  • 搭建 Zero to JupyterHub with Kubernetes 下篇 - Jupyterhub on k8s。

官方文档:Zero to JupyterHub with Kubernetes

**版本对应:**This documentation is for Helm chart version 2.0.0 that deploys JupyterHub version 3.0.0 and other components versioned in hub/images/requirements.txt. The Helm chart requires Kubernetes version >=1.20.0 and Helm >=3.5

组件版本
kubernetesv1.20.4
jupyterhub-chart2.0.0
helmv3.12.3

文章目录

    • 第一部分: Setup Kubernetes
      • 1、Setup Kubernetes
      • 2、Setting up `helm`
    • 第二部分: Setup JupyterHub
      • 1、Installing JupyterHub
        • 1.1 下载所需jupyterhub chart版本
        • 1.2 下载相关离线镜像
        • 1.3 加载镜像
        • 1.4 jupyterhub 配置
        • 1.4.1 预先配置pv与pvc
        • 1.5 启动jupyterhub
        • 1.6 jupyterhub 服务验证

第一部分: Setup Kubernetes

1、Setup Kubernetes

kubernetes-v1.20.4 离线二进制部署

[root@k8s-master /data/s0/kubernetes]$ kubectl version --short
Client Version: v1.20.4
Server Version: v1.20.4

2、Setting up helm

通过百度网盘分享的文件:helm-v3.12.3-linux-amd64.tar.gz
链接:https://pan.baidu.com/s/1f8xONKHWshHxieu7jEN4yA
提取码:1234

# 解压安装
[root@k8s-master /data/s0/kubernetes/helm]$ tar -xzvf helm-v3.12.3-linux-amd64.tar.gz
[root@k8s-master /data/s0/kubernetes/helm]$ ln -s /data/s0/kubernetes/helm/linux-amd64/helm /usr/local/bin
# 验证
[root@k8s-master /data/s0/kubernetes/helm]$ helm version
version.BuildInfo{Version:"v3.12.3", GitCommit:"3a31588ad33fe3b89af5a2a54ee1d25bfe6eaa5e", GitTreeState:"clean", GoVersion:"go1.20.7"}

第二部分: Setup JupyterHub

1、Installing JupyterHub

1.1 下载所需jupyterhub chart版本

​ JupyterHub’s Helm chart 仓库 --> jupyterhub-2.0.0.tgz

通过百度网盘分享的文件:jupyterhub-2.0.0.tgz
链接:https://pan.baidu.com/s/1ZrEHC9al29ye7n0W3UAi3g
提取码:1234

1.2 下载相关离线镜像
# 解压安装
[root@k8s-master /data/s0/kubernetes/helm]$ tar -xzvf jupyterhub-2.0.0.tgz   # jupyterhub chart 
# 查看所需镜像
[root@k8s-master /data/s0/kubernetes/helm]$ cat jupyterhub/Chart.yaml
annotations:artifacthub.io/images: |- image: jupyterhub/configurable-http-proxy:4.5.3name: configurable-http-proxy- image: jupyterhub/k8s-hub:2.0.0name: k8s-hub- image: jupyterhub/k8s-image-awaiter:2.0.0name: k8s-image-awaiter- image: jupyterhub/k8s-network-tools:2.0.0name: k8s-network-tools- image: jupyterhub/k8s-secret-sync:2.0.0name: k8s-secret-sync- image: jupyterhub/k8s-singleuser-sample:2.0.0name: k8s-singleuser-sample- image: k8s.gcr.io/kube-scheduler:v1.23.10  # helm upgrate 启动部署时,此版本有问题,改为v1.20.15,注意values.yaml中镜像名称修改,镜像保持一致name: kube-scheduler- image: k8s.gcr.io/pause:3.8  # 部署k8s时已下载安装,注意values.yaml中镜像名称修改,保持一致name: pause- image: k8s.gcr.io/pause:3.8name: pausd- image: traefik:v2.8.4name: traefik# 联网保存本地镜像
# 1. 下载保存 jupyterhub/configurable-http-proxy:4.5.3
> docker pull quay.io/jupyterhub/configurable-http-proxy:4.5.3
> docker tag quay.io/jupyterhub/configurable-http-proxy:4.5.3 jupyterhub/configurable-http-proxy:4.5.3
> docker save -o configurable-http-proxy:4.5.3.tar jupyterhub/configurable-http-proxy:4.5.3  # 2. 下载保存 jupyterhub/k8s-hub:2.0.0
> docker pull quay.io/jupyterhub/k8s-hub:2.0.0
> docker tag quay.io/jupyterhub/k8s-hub:2.0.0 jupyterhub/k8s-hub:2.0.0
> docker save -o k8s-hub:2.0.0.tar jupyterhub/k8s-hub:2.0.0# 3. 下载保存 jupyterhub/k8s-image-awaiter:2.0.0
> docker pull quay.io/jupyterhub/k8s-image-awaiter:2.0.0
> docker tag  quay.io/jupyterhub/k8s-image-awaiter:2.0.0 jupyterhub/k8s-image-awaiter:2.0.0> docker save -o k8s-image-awaiter:2.0.0.tar jupyterhub/k8s-image-awaiter:2.0.0
# 4. 下载保存 jupyterhub/k8s-network-tools:2.0.0
> docker pull quay.io/jupyterhub/k8s-network-tools:2.0.0
> docker tag  quay.io/jupyterhub/k8s-network-tools:2.0.0 jupyterhub/k8s-network-tools:2.0.0
> docker save -o k8s-network-tools:2.0.0.tar jupyterhub/k8s-network-tools:2.0.0# 5. 下载保存 jupyterhub/k8s-secret-sync:2.0.0
> docker pull quay.io/jupyterhub/k8s-secret-sync:2.0.0
> docker tag quay.io/jupyterhub/k8s-secret-sync:2.0.0 jupyterhub/k8s-secret-sync:2.0.0
> docker save -o k8s-secret-sync:2.0.0.tar jupyterhub/k8s-secret-sync:2.0.0# 6. 下载保存 jupyterhub/k8s-singleuser-sample:2.0.0
> docker pull m.daocloud.io/docker.io/jupyterhub/k8s-singleuser-sample:2.0.0
> docker tag m.daocloud.io/docker.io/jupyterhub/k8s-singleuser-sample:2.0.0 jupyterhub/k8s-singleuser-sample:2.0.0
> docker save -o k8s-singleuser-sample:2.0.0.tar jupyterhub/k8s-singleuser-sample:2.0.0# 7. 下载保存 k8s.gcr.io/kube-scheduler:v1.20.15
> docker pull k8s-gcr.m.daocloud.io/kube-scheduler:v1.20.15
> docker tag k8s-gcr.m.daocloud.io/kube-scheduler:v1.20.15  k8s.gcr.io/kube-scheduler:v1.20.15
> docker save -o kube-scheduler:v1.20.15.tar k8s.gcr.io/kube-scheduler:v1.20.15# 8. 下载保存 traefik:v2.8.4
> docker pull m.daocloud.io/docker.io/library/traefik:v2.8.4
> docker tag m.daocloud.io/docker.io/library/traefik:v2.8.4 traefik:v2.8.4
> docker save -o traefik:v2.8.4.tar traefik:v2.8.4## 9. 将离线镜像打包上传
> tar -czvf jupyterhub-chart-images.tgz ./*
> scp jupyterhub-chart-images.tgz k8s-master:/data/s0/kubernetes/helm
1.3 加载镜像
# ------------------ k8s-matser,k8s-node1、k8s-node2 ----------------------------
# 1. 加载镜像,node1、node2节点同理
[root@k8s-master /data/s0/kubernetes/helm]$ tar -xzvf jupyterhub-chart-images.tgz -C ./chart-images
[root@k8s-master /data/s0/kubernetes/helm/chart-images]$ docker load -i configurable-http-proxy:4.5.3.tar
[root@k8s-master /data/s0/kubernetes/helm/chart-images]$ docker load -i k8s-hub:2.0.0.tar
[root@k8s-master /data/s0/kubernetes/helm/chart-images]$ docker load -i k8s-image-awaiter:2.0.0.tar
[root@k8s-master /data/s0/kubernetes/helm/chart-images]$ docker load -i k8s-network-tools:2.0.0.tar
[root@k8s-master /data/s0/kubernetes/helm/chart-images]$ docker load -i k8s-secret-sync:2.0.0.tar
[root@k8s-master /data/s0/kubernetes/helm/chart-images]$ docker load -i k8s-singleuser-sample:2.0.0.tar
[root@k8s-master /data/s0/kubernetes/helm/chart-images]$ docker load -i kube-scheduler:v1.20.15.tar
[root@k8s-master /data/s0/kubernetes/helm/chart-images]$ docker load -i traefik:v2.8.4.tar# 2.加载自定义用户科学环境;默认的单用户服务器jupyter镜像 k8s-singleuser-sample
# docker pull m.daocloud.io/docker.io/jupyter/datascience-notebook 默认拉取最新版本,最好指定版本,否则每次拉最新的
[root@k8s-master /data/s0/kubernetes/helm]$ docker load -i datascience-notebook.tar
# 注意:k8s在不指定镜像拉取策略imagePullPolicy的情况下,如果镜像标签tag:latest,imagePullPolicy默认值为“Always” 总是从镜像库拉取;
# 如果镜像标签tag不是:latest,imagePullPolicy默认值为“IfNotPresent” 本地有使用本地镜像,本地没有则拉取镜像库;
[root@k8s-master /data/s0/kubernetes/helm]$ docker tag jupyter/datascience-notebook:latest jupyter/datascience-notebook:2023.10.23
1.4 jupyterhub 配置
# jupyterhub 自定义配置
[root@datanode40 /data/s0/kubernetes/helm]$ touch config.yaml
[root@datanode40 /data/s0/kubernetes/helm]$ vim config.yaml

config.yaml 内容如下:

# 应用名称(deployment、service、pod等资源对象名称)
fullnameOverride: "jupyterhub"# 拉取镜像时,相关仓库身份认证(使用本机离线镜像)
imagePullSecret:create: falseautomaticReferenceInjection: false# hub服务pod配置(auth权限认证)
hub:revisionHistoryLimit: 1                  # Kubernetes 中保留的历史版本数量config:                                  # jupyterhub_cnfig.py 配置文件内容JupyterHub:admin_access: trueadmin_users: - zyp                             # 设置管理员用户authenticator_class: dummy           # 用户验证,测试采用虚拟验证service:type: ClusterIP                        ports:nodePort:db:type: sqlite-pvc                       #  JupyterHub 使用数据库,存储用户信息、服务器状态、活动记录等数据pvc:                                   # 需要预先创建对应pvaccessModes:- ReadWriteOncestorage: 2GisubPath: sqlite                      # PV存储卷子路径,默认根路径storageClassName: sqlite-pv          # 存储类别image:name: jupyterhub/k8s-hubtag: "2.0.0"pullPolicy: IfNotPresent#设置 chp(configurable-http-proxy)pod的代理、公网代理、https代理相关
proxy:service:type: NodePort                            # 公网代理服务                nodePorts:http: 30081chp:                                         # configurable-http-proxy (chp)配置revisionHistoryLimit: 1image:name: jupyterhub/configurable-http-proxytag: "4.5.3" pullPolicy: IfNotPresenthttps:enabled: false                              # 禁用https          # 单用户jupyter服务器
singleuser:networkTools:image:name: jupyterhub/k8s-network-toolstag: "2.0.0"pullPolicy: IfNotPresentstorage:                                       # 配置单用户环境存储type: static                                 # 静态挂载方式static:pvcName: notebook-pvc                      # 存储pvc名称,需手动创建pvc和pvsubPath: "{username}"capacity: 10GihomeMountPath: /home/jovyan                  # 容器中挂载主文件夹存储的位置     # Defines the default image  image:name: jupyterhub/k8s-singleuser-sample        # 可修改为自己的科学计算环境tag: "2.0.0"pullPolicy: IfNotPresent profileList:                                    # 用户科学环境选择- display_name: "sample environment"description: "To avoid too much bells and whistles: Python."default: true- display_name: "Datascience environment"description: "If you want the additional bells and whistles: Python, R, and Julia."kubespawner_override:image: jupyter/datascience-notebook:2023.10.23pullPolicy: IfNotPresentstartTimeout: 300cpu:limit:guarantee: 0.5memory:limit:guarantee: 1Gcmd: jupyterhub-singleuser       # 容器内,启动单用户服务器的命令defaultUrl: "/lab"               # 用户jupyter界面extraEnv:JUPYTERHUB_SINGLEUSER_APP: "jupyter_server.serverapp.ServerApp"  # k8s 容器调度相关
scheduling:userScheduler:revisionHistoryLimit: 1image:name: k8s.gcr.io/kube-schedulertag: "v1.20.15" pullPolicy: IfNotPresentuserPlaceholder:image:name: k8s.gcr.io/pausetag: "3.8"pullPolicy: IfNotPresent# 镜像拉取器
prePuller:                               hook:enabled: false                       # 离线环境,本地镜像,无需拉取pullOnlyOnChanges: falsecontinuous:enabled: falsepullProfileListImages: false# 空闲进程杀死服务 
cull:enabled: trueusers: false # --cull-usersadminUsers: true # --cull-admin-usersremoveNamedServers: false # --remove-named-serverstimeout: 3600 # --timeoutevery: 600 # --cull-everyconcurrency: 10 # --concurrencymaxAge: 0 # --max-age
1.4.1 预先配置pv与pvc

pv 持久化参见 Kubernetes 常规使用记录。

# 配置sqlite存储的PV 和 单用户服务器存储的pv和PVC
[root@k8s-node1 /data/s0/kubernetes/nfs]$ mkdir pvs
[root@k8s-node1 /data/s0/kubernetes/nfs/pvs]$ vim pvs.yaml
# sqlite存储的PV
apiVersion: v1
kind: PersistentVolume
metadata:name: sqlite-pv1      
spec:nfs: path: /data/s0/kubernetes/nfs/pv1readOnly: false server: k8s-node1capacity: storage: 2GiaccessModes: - ReadWriteOncestorageClassName: sqlite-pv  persistentVolumeReclaimPolicy: Retain
---
# 单用户服务器pv
apiVersion: v1
kind: PersistentVolume
metadata:name: notebook-pv2      
spec:nfs: path: /data/s0/kubernetes/nfs/pv2readOnly: false server: k8s-node1capacity: storage: 200GiaccessModes: - ReadWriteMany storageClassName: single-notebook   persistentVolumeReclaimPolicy: Retain 
---  
# 单用户服务器pvc
apiVersion: v1
kind: PersistentVolumeClaim
metadata:name: notebook-pvc                # 与配置文件对应 namespace: jhub 
spec:accessModes:- ReadWriteManystorageClassName: single-notebook  resources: requests:storage: 20Gi
1.5 启动jupyterhub
# 创建命名空间
[root@k8s-master /data/s0/kubernetes/helm]$ kubectl create ns jhub
# 启动预设pvc和pv 
[root@k8s-node1 /data/s0/kubernetes/nfs/pvs]$ kubectl apply -f pvs.yaml
# 启动jupyterhub
[root@k8s-master /data/s0/kubernetes/helm]$ helm upgrade --cleanup-on-fail \--install jupyterhub-release ./jupyterhub \--namespace jhub \--values config.yaml

在这里插入图片描述

# 验证pod运行状态(若存在pod 状态  Pending or ContainerCreating --》 kubectl --namespace=jhub describe pod <name of pod>)
[root@k8s-master /data/s0/kubernetes/helm]$ kubectl --namespace=jhub get pod
jupyterhub-hub-c87985f75-lkl4f               1/1     Running   0          5m18s
jupyterhub-proxy-5d95bb6786-87cqs            1/1     Running   0          5m18s
jupyterhub-user-scheduler-786c6759c7-2r24k   1/1     Running   0          5m18s
jupyterhub-user-scheduler-786c6759c7-6x5k6   1/1     Running   0          5m18s# 验证是否为k8s服务jupyterhub-proxy-public提供了外部IP
[root@k8s-master /data/s0/kubernetes/helm]$ kubectl --namespace=jhub get svc 
NAME                      TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)        AGE
jupyterhub-hub            ClusterIP   10.0.0.50    <none>        8081/TCP       90s
jupyterhub-proxy-api      ClusterIP   10.0.0.196   <none>        8001/TCP       90s
jupyterhub-proxy-public   NodePort    10.0.0.51    <none>        80:30081/TCP   90s

问题:Error: rendered manifests contain a resource that already exists. Unable to continue with install: ClusterRole “jupyterhub-user-scheduler” in namespace “” exists and cannot be imported into the current release: invalid ownership metadata; annotation validation error: key “meta.helm.sh/release-name” must equal “jupyterhub-release”: current value is “jupyterhub-v1”

解决:

​ kubectl delete clusterrole jupyterhub-user-scheduler

​ kubectl delete clusterrolebinding jupyterhub-user-scheduler

1.6 jupyterhub 服务验证

远程主机登录 http://k8s-matser:80081

  • 用户登录界面
    在这里插入图片描述

  • 科学计算环境选择界面
    在这里插入图片描述

  • 用户分析操作界面

    在这里插入图片描述

  • 底层单用户容器

在这里插入图片描述

  • 持久化存储查看

在这里插入图片描述

  • k8s管理界面查看

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/891970.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Matlab回归预测大合集(不定期更新)-188

截至2025-1-2更新 1.BP神经网络多元回归预测&#xff08;多输入单输出&#xff09; 2.RBF神经网络多元回归预测&#xff08;多输入单输出&#xff09; 3.RF随机森林多元回归预测&#xff08;多输入单输出&#xff09; 4.CNN卷积神经网络多元回归预测&#xff08;多输入单输…

【读书与思考】历史是一个好东西

【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】【读书与思考】 导言 以后《AI日记》专栏我想专注于 AI 相关的学习、成长和工作等。而与 AI 无关的一些读书、思考和闲聊&#xff0c;我打算写到这里&#xff0c;我会尽量控制自己少想和少写。 下图的一些感想…

Git使用mirror备份和恢复

Git使用mirror备份和恢复 使用到的命令总结备份1.进入指定代码仓库&#xff0c;拷贝地址2.进入要备份到的文件夹&#xff0c;右键打开git命令行&#xff0c;输入以下命令3.命令执行完成后会生成一个新文件夹 恢复1.在gitee上创建代码仓库![请添加图片描述](https://i-blog.csdn…

人工智能的可解释性:从黑箱到透明

✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连✨ ​​ ​ 人工智能&#xff08;AI&#xff09;的快速发展和广泛应用&#xff0c;带来了许多革新的成果&#xff0c;但也引发了对其透明性和可解释…

Nacos注册中心介绍及部署

文章目录 Nacos注册中心介绍及部署1. 注册中心简介2. 注册中心原理3. Nacos部署-基于Docker3.1 Nacos官网下载3.2 基础数据信息3.3 环境信息3.4 docker安装部署3.5 测试3.5 测试 Nacos注册中心介绍及部署 1. 注册中心简介 Spring Cloud注册中心是Spring Cloud微服务架构中的一…

Nginx与frp结合实现局域网和公网的双重https服务

背景&#xff1a; 因为局域网内架设了 tiddlywiki、 Nextcloud 等服务&#xff0c;同时也把公司的网站架设在了本地&#xff0c;为了实现局域网直接在局域网内访问&#xff0c;而外部访问通过frps服务器作为反向代理的目的&#xff0c;才有此内容。 实现的效果如下图琐事 不喜欢…

zephyr移植到STM32

Zephy如何移植到单片机 1. Window下搭建开发环境1.1 安装Choncolatey1.2 安装相关依赖1.3创建虚拟python环境1.4 安装west1.4.1 使用 pip 安装 west1.4.2 检查 west 安装路径1.4.3 将 Scripts路径添加到环境变量1.4.4 验证安装 1.5 获取zephyr源码和[安装python](https://so.cs…

【分糖果——DFS】

题目 代码1 #include <bits/stdc.h> using namespace std; set<string> s; void dfs(int num1, int num2, int u, string ans) {if (u 7){if (num1 num2 > 5)return;ans (char)((num1) * 17 num2);s.insert(ans);return;}for (int i 0; i < num1; i){f…

【HarmonyOS】鸿蒙应用实现屏幕录制详解和源码

【HarmonyOS】鸿蒙应用实现屏幕录制详解和源码 一、前言 官方文档关于屏幕录制的API和示例介绍获取简单和突兀。使用起来会让上手程度变高。所以特意开篇文章&#xff0c;讲解屏幕录制的使用。官方文档参见&#xff1a;使用AVScreenCaptureRecorder录屏写文件(ArkTS) 二、方…

解决在VS2019/2022中编译c++项目报错fatal error C1189: #error : “No Target Architecture“

解决在VS2019/2022中编译c项目报错fatal error C1189: #error : “No Target Architecture” 报错原因 在winnt.h中&#xff0c;不言而喻&#xff0c;一目了然&#xff1a; 代码节选&#xff1a; #if defined(_AMD64_) || defined(_X86_) #define PROBE_ALIGNMENT( _s ) TY…

Python教程丨Python环境搭建 (含IDE安装)——保姆级教程!

工欲善其事&#xff0c;必先利其器。 学习Python的第一步不要再加收藏夹了&#xff01;提高执行力&#xff0c;先给自己装好Python。 1. Python 下载 1.1. 下载安装包 既然要下载Python&#xff0c;我们直接进入python官网下载即可 Python 官网&#xff1a;Welcome to Pyt…

实现AVL树

目录 AVL树概念 AVL树结构 AVL树插入 LL型 - 右单旋 RR型 - 左单旋 LR型 - 左右双旋 RL型 - 右左双旋 插入代码实现 AVL树测试 附AVL树实现完整代码 AVL树概念 前面的博客介绍了搜索二叉树&#xff0c;二叉搜索树-CSDN博客 在某些特定的情况下&#xff0c;⼆叉搜索树…

极客说|微软 Phi 系列小模型和多模态小模型

作者&#xff1a;胡平 - 微软云人工智能高级专家 「极客说」 是一档专注 AI 时代开发者分享的专栏&#xff0c;我们邀请来自微软以及技术社区专家&#xff0c;带来最前沿的技术干货与实践经验。在这里&#xff0c;您将看到深度教程、最佳实践和创新解决方案。关注「极客说」&am…

React+redux项目搭建流程

1.创建项目 create-react-app my-project --template typescript // 创建项目并使用typescript2.去除掉没用的文件夹&#xff0c;只保留部分有用的文件 3.项目配置&#xff1a; 配置项目的icon 配置项目的标题 配置项目的别名等&#xff08;craco.config.ts&…

HTML+CSS+JS制作高仿小米官网网站(内附源码,含6个页面)

一、作品介绍 HTMLCSSJS制作一个高仿小米官网网站&#xff0c;包含首页、商品详情页、确认订单页、订单支付页、收货地址管理页、新增收获地址页等6个静态页面。其中每个页面都包含一个导航栏、一个主要区域和一个底部区域。 二、页面结构 1. 顶部导航栏 包含Logo、主导航菜…

obs directx11

创建逻辑 obs 在windows 下分为Opengl 和 directx 两种渲染模式&#xff0c;默认使用的是directx &#xff0c;兼容性更好&#xff1b; 代码路径&#xff1a; E:\opensrc\obs_studio_src\obs-studio\UI\obs-app.cpp 选择渲染模式 const char* OBSApp::GetRenderModule() con…

QT实现 端口扫描暂停和继续功能 3

上篇QT给端口扫描工程增加线程2-CSDN博客 为按钮pushButton_Stop添加clicked事件&#xff0c;功能为暂停扫描&#xff0c;并在暂停后显示继续按钮&#xff0c;点击继续按钮之后继续扫描 1.更新UI 添加继续按钮 点击转到槽则会自动声明 2. 更新 MainWindow.h 需要新增的部分…

nginx-限流(请求/并发量)

一. 简述&#xff1a; 在做日常的web运维工作中&#xff0c;难免会遇到服务器流量异常&#xff0c;负载过大等情况。恶意攻击访问/爬虫等非正常性请求&#xff0c;会带来带宽的浪费&#xff0c;服务器压力增大&#xff0c;影响业务质量。 二. 限流方案&#xff1a; 对于这种情…

分布式ID生成-雪花算法实现无状态

雪花算法这里不再赘述&#xff0c;其缺点是有状态&#xff08;多副本隔离时&#xff0c;依赖手动配置workId和datacenterId&#xff09;&#xff0c;代码如下&#xff1a; /*** 雪花算法ID生成器*/ public class SnowflakeIdWorker {/*** 开始时间截 (2017-01-01)*/private st…

Edge SCDN高效防护与智能加速

当今数字化时代&#xff0c;网络安全和内容分发效率已成为企业业务发展的关键因素。酷盾安全推出了Edge SCDN解决方案&#xff0c;为企业提供全方位的安全防护和高效的内容分发服务。 一、卓越的安全防护能力 1.DDoS攻击的精准防御&#xff1a;Edge SCDN具备强大的DDoS攻击检测…