AF3 AtomAttentionEncoder类的init_pair_repr方法解读

AlphaFold3 的 AtomAttentionEncoder 类中,init_pair_repr 方法方法负责为原子之间的关系计算成对表示(pair representation),这是原子转变器(atom transformer)模型的关键组成部分,直接影响对蛋白质/分子相互作用的建模。

init_pair_repr源代码:

    def init_pair_repr(self,features: Dict[str, Tensor],atom_cond: Tensor,z_trunk: Optional[Tensor],) -> Tensor:"""Compute the pair representation for the atom transformer.This is done in a separate function for checkpointing. The intermediate activations due to theatom pair representations are large and can be checkpointed to reduce memory usage.Args:features:Dictionary of input features.atom_cond:[bs, n_atoms, c_atom] The single atom conditioning from init_single_reprz_trunk:[bs, n_tokens, n_tokens, c_trunk] the pair representation from the trunkReturns:[bs, n_atoms // n_queries, n_queries, n_keys, c_atompair] The pair representation"""# Compute offsets between atom reference positionsa = partition_tensor(features['ref_pos'], self.n_queries, self.n_queries)  # (bs, n_atoms // 32, 32, 3)b = partition_tensor(features['ref_pos'], self.n_queries, self.n_keys)  # (bs, n_atoms // 32, 128, 3)offsets = a[:, :, :, None, :] - b[:, :, None, :, :]  # (bs, n_atoms // 32, 32, 128, 3)# Compute the valid maskref_space_uid = features['ref_space_uid'].unsqueeze(-1)  # (bs, n_atoms, 1)a = partition_tensor(ref_space_uid, self.n_queries, self.n_queries)  # (bs, n_atoms // 32, 32)b = partition_tensor(ref_space_uid, self.n_queries, self.n_keys)  # (bs, n_atoms // 32, 128)valid_mask = a[:, :, :, None] == b[:, :, None, :]  # (bs, n_atoms // 32, 32, 128, 1)valid_mask = valid_mask.to(offsets.dtype)  # convert boolean to binary# Embed the atom offsets and the valid masklocal_atom_pair = self.linear_atom_offsets(offsets) * valid_mask# Embed pairwise inverse squared distances, and the valid masksquared_distances = offsets.pow(2).sum(dim=-1, keepdim=True)  # (bs, n_atoms // 32, 32, 128, 1)inverse_dists = torch.reciprocal(torch.add(squared_distances, 1))local_atom_pair = local_atom_pair + self.linear_atom_distances(inverse_dists) * valid_masklocal_atom_pair = local_atom_pair + self.linear_mask(valid_mask) * valid_mask# If provided, add trunk embeddingsif self.trunk_conditioning:local_atom_pair = local_atom_pair + map_token_pairs_to_local_atom_pairs(self.proj_trunk_pair(z_trunk),features['atom_to_token'])# Add the combined single conditioning to the pair representationa = partition_tensor(self.linear_single_to_pair_row(F.relu(atom_cond)), self.n_queries, self.n_queries)b = partition_tensor(self.linear_single_to_pair_col(F.relu(atom_cond)), self.n_queries, self.n_keys)local_atom_pair = local_atom_pair + (a[:, :, :, None, :] + b[:, :, None, :, :])# Run a small MLP on the pair activationslocal_atom_pair = self.pair_mlp(local_atom_pair)return local_atom_pair

init_pair_repr代码解读:

1. 函数定义与注释
def init_pair_repr(self,features: Dict[str, Tensor],atom_cond: Tensor,z_trunk: Optional[Tensor],
) -> Tensor:"""Compute the pair representation for the atom transformer.Args:features: Dictionary of input features.atom_cond: [bs, n_atoms, c_atom] The single atom conditioning from init_single_reprz_trunk: [bs, n_tokens, n_tokens, c_trunk] the pair representation from the trunkReturns:[bs, n_atoms // n_queries, n_queries, n_keys, c_atompair] The pair representation"""
  • 功能描述

    • 方法用于计算原子之间的成对表示(pair representation),描述原子对之间的相互关系。
    • 通过输入特征和条件化单原子表示(atom_cond)生成成对表示。
    • 如果有 trunk 模块输出(z_trunk),进一步将其纳入建模。
  • 输入参数

    • features: 包含输入原子特征的字典,例如参考位置、掩码等。
    • atom_cond: 由 init_single_repr 生成的单原子条件表示,提供单原子特征。
    • z_trunk: 可选的 trunk 模块输出,用于加入全局上下文信息。
  • 输出

    • 返回形状为 [bs, n_atoms // n_queries, n_queries, n_keys, c_atompair] 的成对表示张量。
2.  计算原子间的位移偏移量
a = partition_tensor(features['ref_pos'], self.n_queries, self.n_queries)  # (bs, n_atoms // 32, 32, 3)
b = partition_tensor(features['ref_pos'], self.n_queries, self.n_keys)  # (bs, n_atoms // 32, 128, 3)
offsets = a[:, :, :, None, :] - b[:, :, None, :, :]  # (bs, n_atoms // 32, 32, 128, 3)
  • 功能
    • 通过分块操作,将原子的三维参考位置(ref_pos)分为 query 和 key 的两个集合,计算原子对的位移向量 offsets
  • 理论基础
    • 原子间的位移向量是物理意义上的距离关系的基础,直接影响距离计算和相互作用建模。
  • 细节
    • partition_tensor 将输入张量按块划分,便于后续处理。
    • offsets 形状为 [bs, n_atoms // n_queries, n_queries, n_keys, 3]

原理解读:

什么是 features['ref_pos']

  • features['ref_pos'] 是原子在 3D 空间中的参考坐标,形状为 (bs, n_atoms, 3)
    • bs 是批量大小(batch size)。
    • n_atoms 是蛋白质中的原子数量。
    • 每个原子的坐标由 3 个值(x, y, z)表示。

为什么使用 partition_tensor

  • partition_tensor 将输入张量按滑动窗口分区,使得可以对局部子集进行高效计算。
  • 作用:通过滑动窗口对原子的参考坐标进行局部划分:
    • 第一次划分 a:窗口大小为 n_queries,滑动步长为 n_queries,即每次取 32 个原子的局部坐标。
    • 第二次划分 b:窗口大小为 n_keys,滑动步长为 n_queries,即每次取 128 个原子的局部坐标。
  • 分区后的结果:
    • a:形状为 (bs, n_atoms // 32, 32, 3),表示每个滑动窗口内的原子局部坐标(32 个)。
    • b:形状为 (bs, n_atoms // 32, 128, 3),表示每个滑动窗口内的原子扩展区域(128 个)。

 为什么计算 offset

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/891791.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SD下载、安装、使用、卸载-Stable Diffusion整合包v4.10发布!

目录 前言概述 SD安装1、安装软件2、启动3、配置4、运行5、测试 导入SD模型【决定画风】常用模型下载安装模型 SD卸载SD文生图提示词提示词使用技巧提示词的高级使用技巧强调关键词 前言 我向来不喜欢搞一些没有用的概念,所以直接整理可能用到的东西。 sd简单的说…

Mac iTerm2集成DeepSeek AI

1. 去deepseek官网申请api key,DeepSeek 2. 安装iTerm2 AI Plugin插件,https://iterm2.com/ai-plugin.html,插件解压后直接放到和iTerms相同的位置,默认就在/Applications 下 3. 配置iTerm2 4. 重启iTerm2,使用快捷键呼出AI对话…

MySQL数据库笔记——多版本并发控制MVCC

大家好,这里是Good Note,关注 公主号:Goodnote,本文详细介绍MySQL的并发控制:多版本并发控制MVCC。 文章目录 背景介绍数据库并发控制——锁机制悲观锁和乐观锁悲观锁乐观锁 数据库并发控制——MVCC 的引入MVCC 和锁机…

电脑里msvcr120.dll文件丢失怎样修复?

电脑里msvcr120.dll文件丢失的修复指南 在电脑的日常使用中,我们可能会遇到各种各样的系统文件丢失问题,其中msvcr120.dll文件的丢失就是较为常见的一种。作为一名在软件开发领域深耕多年的从业者,我将为大家详细解析msvcr120.dll文件的重要…

今日头条ip属地根据什么显示?不准确怎么办

在今日头条这样的社交媒体平台上,用户的IP属地信息对于维护网络环境的健康与秩序至关重要。然而,不少用户发现自己的IP属地显示与实际位置不符,这引发了广泛的关注和讨论。本文将深入探讨今日头条IP属地的显示依据,并提供解决IP属…

【Rust自学】10.3. trait Pt.1:trait的定义、约束与实现

喜欢的话别忘了点赞、收藏加关注哦,对接下来的教程有兴趣的可以关注专栏。谢谢喵!(・ω・) 题外话:trait的概念非常非常非常重要!!!整个第10章全都是Rust的重难点!&#x…

大白话拆解——多线程中关于死锁的一切(七)(已完结)

前言: 25年初,这个时候好多小伙伴都在备战期末 小编明天还有一科考试,日更一篇,今天这篇一定会对小白非常有用的!!! 因为我们会把案例到用代码实现的全过程思路呈现出来!&#xff…

GitLab集成Runner详细版--及注意事项汇总【最佳实践】

一、背景 看到网上很多用户提出的runner问题其实实际都不是问题,不过是因为对runner的一些细节不清楚导致了误解。本文不系统性的介绍GitLab-Runner,因为这类文章写得好的特别多,本文只汇总一些常几的问题/注意事项。旨在让新手少弯路。 二、…

《数据结构》期末考试测试题【中】

《数据结构》期末考试测试题【中】 21.循环队列队空的判断条件为?22. 单链表的存储密度比1?23.单链表的那些操作的效率受链表长度的影响?24.顺序表中某元素的地址为?25.m叉树第K层的结点数为?26. 在双向循环链表某节点…

「Mac畅玩鸿蒙与硬件54」UI互动应用篇31 - 滑动解锁屏幕功能

本篇教程将实现滑动解锁屏幕功能,通过 Slider 组件实现滑动操作,学习事件监听、状态更新和交互逻辑的实现方法。 关键词 滑动解锁UI交互状态管理动态更新事件监听 一、功能说明 滑动解锁屏幕功能包含以下功能: 滑动解锁区域:用…

螺栓松动丢失腐蚀生锈检测数据集VOC+YOLO格式504张4类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):504 标注数量(xml文件个数):504 标注数量(txt文件个数):504 标注…

Postman测试big-event

报错500。看弹幕,知道可能是yml或sql有问题。 所以检查idea工作台, 直接找UserMapper检查,发现完全OK。 顺着这个error发现可能是sql有问题。因为提示是sql问题,而且是有now()的那个sql。 之后通过给的课件,复制课件…

如何使用大语言模型进行事件抽取与关系抽取

诸神缄默不语-个人CSDN博文目录 文章目录 1. 什么是事件抽取与关系抽取?2. 示例:使用大语言模型进行事件抽取与关系抽取 1. 什么是事件抽取与关系抽取? 事件抽取是指从文本中识别出与某些“事件”相关的信息。这些事件通常包括动作、参与者、…

NAT网络技术

NAT(Network Address Translation,网络地址转换)是一种常用的网络技术,主要用于在私有网络和公共网络之间转换IP地址。在家庭和小型企业网络当中用的比较多。它的主要功能有IP地址重用和增强网络的安全性。   NAT允许一个整个网…

SpringBoot框架开发中常用的注解

文章目录 接收HTTP请求。RestController全局异常处理器Component依赖注入LombokDataBuildersneakyThrowsRequiredArgsConstructor 读取yml文件配置类注解 接收HTTP请求。 RequestMapping 接收HTTP请求。具体一点是 GetMapping PostMapping PutMapping DeleteMapping 一共…

TVS二极管选型【EMC】

TVS器件并联在电路中,当电路正常工作时,他处于截止状态(高阻态),不影响线路正常工作,当线路处于异常过压并达到其击穿电压时,他迅速由高阻态变为低阻态,给瞬间电流提供一个低阻抗导通…

Azkaban其二,具体使用以及告警设置

目录 Azkaban的使用 1、使用Flow1.0(比较老旧) 2、Flow2.0的用法 1、小试牛刀 2、YAML格式的数据 3、多任务依赖 4、内嵌流(嵌套流)案例 5、动态传参 3、Azkaban的报警机制 1)邮箱通知 2)电话报警机制 4、关…

文档 | Rstudio下的轻量级单页面markdown阅读器 markdownReader

需求:在写R数据分析项目的时候,代码及结果的关键变化怎么记录下来?最好git能很容易的跟踪版本变化。 markdown 是最理想的选择,本文给出一种Rstuidio下的轻量级md阅读器实现:markdownReader。书写md还是在Rstudio。更…

SonarQube相关的maven配置及使用

一、maven 全局配置 <settings><pluginGroups><pluginGroup>org.sonarsource.scanner.maven</pluginGroup></pluginGroups><profiles><profile><id>sonar</id><activation><activeByDefault>true</acti…

Arduino Uno简介与使用方法

目录 一、Arduino Uno概述 1. 硬件特性 2. 开发环境 二、Arduino Uno的基本使用方法 1. 硬件连接 2. 软件编程 三、Arduino Uno编程基础 1. 基本语法 2. 常用函数 四、Arduino Uno应用举例 1. LED闪烁 2. 温度检测 3. 超声波测距 五、Arduino Uno的扩展与应用 1…