目录
一、概念和定义
二、WordCount案例
1、WordCountMapper
2、WordCountReducer
3、WordCountDriver
三、序列化
1、为什么序列化
2、为什么不用Java的序列化
3、Hadoop序列化特点:
4、自定义bean对象实现序列化接口(Writable)
4.1、bean
4.2、FlowBeanMapper
4.3、FlowReducer
4.4、FlowDriver
四、MapReduce框架原理
1、mapreduce流程
2、Shuffle机制
3、Partion分区
3.1、 默认分区方法
3.2、自定义分区
4、WritableComparable
5、Combiner合并
6、自定义FileOutputFormat
7、Reduce Join
8、数据清洗 ETL
五、数据压缩
1、参数说明
2、代码示例
六、完整代码
七、参考
一、概念和定义
请看 https://blog.csdn.net/weixin_48935611/article/details/137856999,这个文章概括的很全面,本文主要展示MapReduce的使用。
二、WordCount案例
1、WordCountMapper
package com.xiaojie.hadoop.mapreduce.wordcount;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;/*** @author 熟透的蜗牛* @version 1.0* @description: TODO* @date 2024/12/27 9:00*/
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {Text kOut = new Text();IntWritable vOut = new IntWritable(1);/*** @param key 偏移量* @param value 文本值* @param context 上下文* @description:* @return: void* @author 熟透的蜗牛* @date: 2024/12/27 9:01*/@Overrideprotected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {
// hello world
// hello mapreduce
// hello haddop
// hadoop
// java
// mysql
// mysql orcale/**这里输出的结果为(hello,1)(world,1)(hello,1) (mapreduce,1)(hello,1)......*///获取一行,输入的内容String line = value.toString();//分隔String[] words = line.split(" ");for (String word : words) {kOut.set(word);//kout 即为单词 vout 单词出现的次数context.write(kOut, vOut);}}
}
2、WordCountReducer
package com.xiaojie.hadoop.mapreduce.wordcount;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;/*** @author 熟透的蜗牛* @version 1.0* @description: reduce把map的输出当作输入* @date 2024/12/27 9:17*/
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {int sum;IntWritable v = new IntWritable();/*** @param key map 输出的key kOut* @param values map输出的value Vout* @param context* @description:* @return: void* @author 熟透的蜗牛* @date: 2024/12/27 9:22*/@Overrideprotected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {//累加求和,合并map传递过来的值sum = 0;for (IntWritable val : values) {sum += val.get();}//输出结果v.set(sum);context.write(key, v);}
}
3、WordCountDriver
package com.xiaojie.hadoop.mapreduce.wordcount;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;/*** @author 熟透的蜗牛* @version 1.0* @description: TODO* @date 2024/12/27 9:23*/
public class WordCountDriver {public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {// 1 获取配置信息以及获取job对象Configuration configuration = new Configuration();Job job = Job.getInstance(configuration);// 2 关联本Driver程序的jarjob.setJarByClass(WordCountDriver.class);// 3 关联Mapper和Reducer的jarjob.setMapperClass(WordCountMapper.class);job.setReducerClass(WordCountReducer.class);// 4 设置Mapper输出的kv类型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(IntWritable.class);// 5 设置最终输出kv类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);// 6 设置输入和输出路径FileInputFormat.setInputPaths(job, new Path("D:\\hadoop\\hello.txt"));FileOutputFormat.setOutputPath(job, new Path("D:\\hadoop\\wordcount"));// 7 提交jobboolean result = job.waitForCompletion(true);System.exit(result ? 0 : 1);}
}
三、序列化
1、为什么序列化
一般来说,“活的”对象只生存在内存里,关机断电就没有了。而且“活的”对象只能由本地的进程使用,不能被发送到网络上的另外一台计算机。然而序列化可以存储“活的”对象,可以将“活的”对象发送到远程计算机。
2、为什么不用Java的序列化
Java的序列化是一个重量级序列化框架(Serializable),一个对象被序列化后,会附带很多额外的信息(各种校验信息,Header,继承体系等),不便于在网络中高效传输。所以,Hadoop自己开发了一套序列化机制(Writable)。
3、Hadoop序列化特点:
- (1)紧凑:高效使用存储空间。
- (2)快速:读写数据的额外开销小。
- (3)互操作:支持多语言的交互
4、自定义bean对象实现序列化接口(Writable)
4.1、bean
package com.xiaojie.hadoop.mapreduce.flow;import org.apache.hadoop.io.Writable;import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;/*** @author 熟透的蜗牛* @version 1.0* @description: 定义一个bean 实现 writable接口* @date 2024/12/27 10:25*/
public class FlowBean implements Writable {private long upFlow; //上行流量private long downFlow; //下行流量private long sumFlow; //总流量//创建无参构造函数public FlowBean() {}//创建gettter setter 方法public long getUpFlow() {return upFlow;}public void setUpFlow(long upFlow) {this.upFlow = upFlow;}public long getDownFlow() {return downFlow;}public void setDownFlow(long downFlow) {this.downFlow = downFlow;}public long getSumFlow() {return sumFlow;}public void setSumFlow(long sumFlow) {this.sumFlow = sumFlow;}//重写setSumFlow 方法public void setSumFlow() {this.sumFlow = this.upFlow + this.downFlow;}//重写序列化方法,输出和输入的顺序要保持一致@Overridepublic void write(DataOutput out) throws IOException {out.writeLong(upFlow);out.writeLong(downFlow);out.writeLong(sumFlow);}@Overridepublic void readFields(DataInput in) throws IOException {this.upFlow = in.readLong();this.downFlow = in.readLong();this.sumFlow = in.readLong();}//结果显示在文本中,重写tostring 方法,@Overridepublic String toString() {return upFlow + "\t" + downFlow + "\t" + sumFlow;}
}
4.2、FlowBeanMapper
package com.xiaojie.hadoop.mapreduce.flow;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;/*** @author 熟透的蜗牛* @version 1.0* @description: 流量mapper* @date 2024/12/27 10:32*/
public class FlowBeanMapper extends Mapper<LongWritable, Text, Text, FlowBean> {//定义一个输出的keyprivate Text outKey = new Text();//定义输出的value 即 FlowBeanprivate FlowBean outValue = new FlowBean();/*** @param key map的输入值偏移量* @param value map 的输入value* @param context* @description:* @return: void* @author 熟透的蜗牛* @date: 2024/12/27 10:35*/@Overrideprotected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, FlowBean>.Context context) throws IOException, InterruptedException {//获取一行数据String line = value.toString();//切割数据String[] split = line.split("\t");//抓取我们需要的数据:手机号,上行流量,下行流量String phone = split[1]; //手机号//上行流量 ,由于有的数据没有,这里从后面取值Long upFlow = Long.parseLong(split[split.length - 3]);Long downFlow = Long.parseLong(split[split.length - 2]);//封装输出结果//设置输出的keyoutKey.set(phone);//设置输出的valueoutValue.setUpFlow(upFlow);outValue.setDownFlow(downFlow);outValue.setSumFlow();//写出outK outVcontext.write(outKey, outValue);}
}
4.3、FlowReducer
package com.xiaojie.hadoop.mapreduce.flow;import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;/*** @author 熟透的蜗牛* @version 1.0* @description: 定义流量输出的reduce* @date 2024/12/27 10:46*/
public class FlowReducer extends Reducer<Text, FlowBean, Text, FlowBean> {private FlowBean finalOutV = new FlowBean();@Overrideprotected void reduce(Text key, Iterable<FlowBean> values, Reducer<Text, FlowBean, Text, FlowBean>.Context context) throws IOException, InterruptedException {long totalUp = 0;long totalDown = 0;//遍历values,将其中的上行流量,下行流量分别累加for (FlowBean bean : values) {totalUp += bean.getUpFlow();totalUp += bean.getDownFlow();}//封装输出结果finalOutV.setUpFlow(totalUp);finalOutV.setDownFlow(totalDown);finalOutV.setSumFlow();//输出结果context.write(key, finalOutV);}
}
4.4、FlowDriver
package com.xiaojie.hadoop.mapreduce.flow;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;/*** @author 熟透的蜗牛* @version 1.0* @description: 驱动* @date 2024/12/27 10:55*/
public class FlowDriver {public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {//获取job对象Configuration configuration = new Configuration();Job job = Job.getInstance(configuration);//设置jarjob.setJarByClass(FlowDriver.class);//设置manpper 和reducerjob.setMapperClass(FlowBeanMapper.class);job.setReducerClass(FlowReducer.class);//设置map输出kv类型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(FlowBean.class);//设置最终输出结果kvjob.setOutputKeyClass(Text.class);job.setOutputValueClass(FlowBean.class);//设置输入输出路径FileInputFormat.setInputPaths(job, new Path("d://hadoop//phone.txt"));FileOutputFormat.setOutputPath(job, new Path("d://hadoop//phone"));//提交任务boolean result = job.waitForCompletion(true);System.exit(result ? 0 : 1);}
}
四、MapReduce框架原理
1、mapreduce流程
直观的效果,图片来自 https://blog.csdn.net/weixin_48935611/article/details/137856999
2、Shuffle机制
Map方法之后,Reduce方法之前的数据处理过程称之为Shuffle
(1)MapTask收集我们的map()方法输出的kv对,放到内存缓冲区中
(2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件
(3)多个溢出文件会被合并成大的溢出文件
(4)在溢出过程及合并的过程中,都要调用Partitioner进行分区和针对key进行排序
(5)ReduceTask根据自己的分区号,去各个MapTask机器上拉取相应的结果分区数据
(6)ReduceTask会抓取到同一个分区的来自不同MapTask的结果文件,ReduceTask会将这些文件再进行合并(归并排序)
(7)合并成大文件后,Shuffle的过程也就结束了,后面进入ReduceTask的逻辑运算过程(从文件中取出一个一个的键值对Group,调用用户自定义的reduce()方法)
注意:
(1)Shuffle中的缓冲区大小会影响到MapReduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快。
(2)缓冲区的大小可以通过参数调整,参数:mapreduce.task.io.sort.mb默认100M。
3、Partion分区
3.1、 默认分区方法
public int getPartition(K key, V value,int numReduceTasks) {return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;}
分区个数小于1的时候,就不会再执行上面的分区计算
3.2、自定义分区
package com.xiaojie.hadoop.mapreduce.partitioner;import org.apache.commons.lang3.StringUtils;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;/*** @author 熟透的蜗牛* @version 1.0* @description: 自定义分区* @date 2024/12/29 15:52*/
public class ProvincePartitioner extends Partitioner<Text, FlowBean> {/*** @param text 键值* @param flowBean 值* @param numPartitions 返回的分区数* @description: 分区逻辑, 手机号136、137、138、139开头都分别放到一个独立的4个文件中,其他开头的放到一个文件中* @return: int* @author 熟透的蜗牛* @date: 2024/12/29 15:54*/@Overridepublic int getPartition(Text text, FlowBean flowBean, int numPartitions) {int partition;if (StringUtils.isNotBlank(text.toString())) {if (text.toString().startsWith("136")) {partition = 0;} else if (text.toString().startsWith("137")) {partition = 1;} else if (text.toString().startsWith("138")) {partition = 2;} else if (text.toString().startsWith("139")) {partition = 3;} else {partition = 4;}} else {partition = 4;}return partition;}
}
package com.xiaojie.hadoop.mapreduce.partitioner;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;/*** @author 熟透的蜗牛* @version 1.0* @description: 驱动* @date 2024/12/27 10:55*/
public class FlowDriver {public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {//获取job对象Configuration configuration = new Configuration();Job job = Job.getInstance(configuration);//设置jarjob.setJarByClass(FlowDriver.class);//设置manpper 和reducerjob.setMapperClass(FlowBeanMapper.class);job.setReducerClass(FlowReducer.class);//设置map输出kv类型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(FlowBean.class);//设置最终输出结果kvjob.setOutputKeyClass(Text.class);job.setOutputValueClass(FlowBean.class);//设施任务数 ,这里设置的要和分区个数一致,如果任务数>分区数则输出文件会有多个为空的文件,如果任务数>1并且<分区数,会有数据无法处理发生异常,// 如果任务数为1 ,只会产生一个文件,分区号必须从0开始,逐渐累加job.setNumReduceTasks(5);//指定自定义分区类job.setPartitionerClass(ProvincePartitioner.class);//设置输入输出路径FileInputFormat.setInputPaths(job, new Path("d://hadoop//phone.txt"));FileOutputFormat.setOutputPath(job, new Path("d://hadoop//phone33"));//提交任务boolean result = job.waitForCompletion(true);System.exit(result ? 0 : 1);}
}
4、WritableComparable
@Overridepublic int compareTo(FlowBean o) {//按照总流量比较,倒序排列if (this.sumFlow > o.sumFlow) {return -1;} else if (this.sumFlow < o.sumFlow) {return 1;} else {//如果总流量一样,按照上行流量排if (this.upFlow > o.upFlow) {return -1;} else if (this.upFlow < o.upFlow) {return 1;}return 0;}}
5、Combiner合并
package com.xiaojie.hadoop.mapreduce.combiner;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;/*** @author 熟透的蜗牛* @version 1.0* @description: TODO* @date 2024/12/29 18:50*/
public class WordCountCombiner extends Reducer<Text, IntWritable, Text, IntWritable> {IntWritable outV= new IntWritable(0);@Overrideprotected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {int sum = 0;for (IntWritable val : values) {sum+=val.get();}outV.set(sum);context.write(key, outV);}
}
package com.xiaojie.hadoop.mapreduce.combiner;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;/*** @author 熟透的蜗牛* @version 1.0* @description: TODO* @date 2024/12/27 9:23*/
public class WordCountDriver {public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {// 1 获取配置信息以及获取job对象Configuration configuration = new Configuration();Job job = Job.getInstance(configuration);// 2 关联本Driver程序的jarjob.setJarByClass(WordCountDriver.class);// 3 关联Mapper和Reducer的jarjob.setMapperClass(WordCountMapper.class);job.setReducerClass(WordCountReducer.class);// 4 设置Mapper输出的kv类型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(IntWritable.class);// 5 设置最终输出kv类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);//设置Combinerjob.setCombinerClass(WordCountCombiner.class);// 6 设置输入和输出路径FileInputFormat.setInputPaths(job, new Path("D:\\hadoop\\hello.txt"));FileOutputFormat.setOutputPath(job, new Path("D:\\hadoop\\wordcount13"));// 7 提交jobboolean result = job.waitForCompletion(true);System.exit(result ? 0 : 1);}
}
6、自定义FileOutputFormat
package com.xiaojie.hadoop.mapreduce.outputformat;import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;/*** @author 熟透的蜗牛* @version 1.0* @description: TODO* @date 2024/12/29 20:29*/
public class LogOutputFormat extends FileOutputFormat<Text, NullWritable> {@Overridepublic RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext job) throws IOException, InterruptedException {//创建一个自定义的RecordWriter返回LogRecordWriter logRecordWriter = new LogRecordWriter(job);return logRecordWriter;}
}
package com.xiaojie.hadoop.mapreduce.outputformat;import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;import java.io.IOException;/*** @author 熟透的蜗牛* @version 1.0* @description: TODO* @date 2024/12/29 20:31*/
public class LogRecordWriter extends RecordWriter<Text, NullWritable> {private FSDataOutputStream fileOut;private FSDataOutputStream otherOut;public LogRecordWriter(TaskAttemptContext job) {try {//获取文件系统对象FileSystem fs = FileSystem.get(job.getConfiguration());//用文件系统对象创建两个输出流对应不同的目录fileOut = fs.create(new Path("d:/hadoop/file.log"));otherOut = fs.create(new Path("d:/hadoop/other.log"));} catch (IOException e) {e.printStackTrace();}}@Overridepublic void write(Text key, NullWritable value) throws IOException, InterruptedException {String log = key.toString();//根据一行的log数据是否包含atguigu,判断两条输出流输出的内容if (log.contains("atguigu")) {fileOut.writeBytes(log + "\n");} else {otherOut.writeBytes(log + "\n");}}@Overridepublic void close(TaskAttemptContext context) throws IOException, InterruptedException {//关流IOUtils.closeStream(fileOut);IOUtils.closeStream(otherOut);}
}
7、Reduce Join
package com.xiaojie.hadoop.mapreduce.join2;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;public class MapJoinDriver {public static void main(String[] args) throws IOException, URISyntaxException, ClassNotFoundException, InterruptedException {// 1 获取job信息Configuration conf = new Configuration();Job job = Job.getInstance(conf);// 2 设置加载jar包路径job.setJarByClass(MapJoinDriver.class);// 3 关联mapperjob.setMapperClass(MapJoinMapper.class);// 4 设置Map输出KV类型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(NullWritable.class);// 5 设置最终输出KV类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(NullWritable.class);// 加载缓存数据job.addCacheFile(new URI("file:///D:/hadoop/pd.txt"));// Map端Join的逻辑不需要Reduce阶段,设置reduceTask数量为0job.setNumReduceTasks(0);// 6 设置输入输出路径FileInputFormat.setInputPaths(job, new Path("D:\\hadoop\\order"));FileOutputFormat.setOutputPath(job, new Path("D:\\hadoop\\output2222"));// 7 提交boolean b = job.waitForCompletion(true);System.exit(b ? 0 : 1);}
}
package com.xiaojie.hadoop.mapreduce.join2;import org.apache.commons.lang3.StringUtils;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URI;
import java.util.HashMap;
import java.util.Map;public class MapJoinMapper extends Mapper<LongWritable, Text, Text, NullWritable> {private Map<String, String> pdMap = new HashMap<>();private Text text = new Text();//任务开始前将pd数据缓存进pdMap@Overrideprotected void setup(Context context) throws IOException, InterruptedException {//通过缓存文件得到小表数据pd.txtURI[] cacheFiles = context.getCacheFiles();Path path = new Path(cacheFiles[0]);//获取文件系统对象,并开流FileSystem fs = FileSystem.get(context.getConfiguration());FSDataInputStream fis = fs.open(path);//通过包装流转换为reader,方便按行读取BufferedReader reader = new BufferedReader(new InputStreamReader(fis, "UTF-8"));//逐行读取,按行处理String line;while (StringUtils.isNotEmpty(line = reader.readLine())) {//切割一行 //01 小米String[] split = line.split("\t");pdMap.put(split[0], split[1]);}//关流IOUtils.closeStream(reader);}@Overrideprotected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, NullWritable>.Context context) throws IOException, InterruptedException {//读取大表数据//1001 01 1String[] fields = value.toString().split("\t");//通过大表每行数据的pid,去pdMap里面取出pnameString pname = pdMap.get(fields[1]);//将大表每行数据的pid替换为pnametext.set(fields[0] + "\t" + pname + "\t" + fields[2]);//写出context.write(text,NullWritable.get());}
}
8、数据清洗 ETL
package com.xiaojie.hadoop.mapreduce.etl;import com.xiaojie.hadoop.mapreduce.outputformat.LogDriver;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class WebLogDriver {public static void main(String[] args) throws Exception {// 输入输出路径需要根据自己电脑上实际的输入输出路径设置args = new String[]{"D:\\hadoop\\weblog", "D:\\hadoop\\outlog"};// 1 获取job信息Configuration conf = new Configuration();Job job = Job.getInstance(conf);// 2 加载jar包job.setJarByClass(LogDriver.class);// 3 关联mapjob.setMapperClass(WebLogMapper.class);// 4 设置最终输出类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(NullWritable.class);// 设置reducetask个数为0job.setNumReduceTasks(0);// 5 设置输入和输出路径FileInputFormat.setInputPaths(job, new Path(args[0]));FileOutputFormat.setOutputPath(job, new Path(args[1]));// 6 提交boolean b = job.waitForCompletion(true);System.exit(b ? 0 : 1);}
}
package com.xiaojie.hadoop.mapreduce.etl;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;/*** @author 熟透的蜗牛* @version 1.0* @description: 数据清洗,清洗掉不符合格式的数据* @date 2024/12/29 21:37*/
public class WebLogMapper extends Mapper<LongWritable, Text, Text, NullWritable> {@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {// 1 获取1行数据String line = value.toString();// 2 解析日志boolean result = parseLog(line, context);// 3 日志不合法退出if (!result) {return;}// 4 日志合法就直接写出context.write(value, NullWritable.get());}// 2 封装解析日志的方法private boolean parseLog(String line, Context context) {// 1 截取String[] fields = line.split(" ");// 2 日志长度大于11的为合法if (fields.length > 11) {return true;} else {return false;}}
}
五、数据压缩
1、参数说明
参数 | 默认值 | 阶段 | 建议 |
io.compression.codecs (在core-site.xml中配置) | 无,这个需要在命令行输入hadoop checknative查看 | 输入压缩 | Hadoop使用文件扩展名判断是否支持某种编解码器 |
mapreduce.map.output.compress(在mapred-site.xml中配置) | false | mapper输出 | 这个参数设为true启用压缩 |
mapreduce.map.output.compress.codec(在mapred-site.xml中配置) | org.apache.hadoop.io.compress.DefaultCodec | mapper输出 | 企业多使用LZO或Snappy编解码器在此阶段压缩数据 |
mapreduce.output.fileoutputformat.compress(在mapred-site.xml中配置) | false | reducer输出 | 这个参数设为true启用压缩 |
mapreduce.output.fileoutputformat.compress.codec(在mapred-site.xml中配置) | org.apache.hadoop.io.compress.DefaultCodec | reducer输出 | 使用标准工具或者编解码器,如gzip和bzip2 |
2、代码示例
package com.xiaojie.hadoop.mapreduce.zip;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.BZip2Codec;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;/*** @author 熟透的蜗牛* @version 1.0* @description: TODO* @date 2024/12/27 9:23*/
public class WordCountDriver {public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {// 1 获取配置信息以及获取job对象Configuration configuration = new Configuration();Job job = Job.getInstance(configuration);// 2 关联本Driver程序的jarjob.setJarByClass(WordCountDriver.class);// 3 关联Mapper和Reducer的jarjob.setMapperClass(WordCountMapper.class);job.setReducerClass(WordCountReducer.class);// 4 设置Mapper输出的kv类型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(IntWritable.class);// 5 设置最终输出kv类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);//设置压缩格式FileOutputFormat.setCompressOutput(job, true);// 设置压缩的方式FileOutputFormat.setOutputCompressorClass(job, BZip2Codec.class);// 6 设置输入和输出路径FileInputFormat.setInputPaths(job, new Path("D:\\hadoop\\hello.txt"));FileOutputFormat.setOutputPath(job, new Path("D:\\hadoop\\wordcount111"));// 7 提交jobboolean result = job.waitForCompletion(true);System.exit(result ? 0 : 1);}
}
六、完整代码
spring-boot: Springboot整合redis、消息中间件等相关代码 - Gitee.com
七、参考
https://blog.csdn.net/weixin_48935611/article/details/137856999
参考内容来自尚硅谷大数据学习