文章目录
- 全文检索
- 任务描述
- 技术难点
- 任务目标
- 实现过程
- 1. java读取Json文件,并导入MySQL数据库中
- 2. 利用Logstah完成MySQL到ES的数据同步
- 3. 开始编写功能接口
- 3.1 全文检索接口
- 3.2 查询详情
- 4. 前端调用
全文检索
任务描述
- 在获取到数据之后如何在ES中进行数据建模,以方便之后搜索接口的实现
- 接下来,要考虑的问题是,如何实现MySQL和ES的数据同步
- 接下来是技术实现,要如何实现基于关键词进行全文检索和对于某一条数据的查询详情
- 在接口实现之后,前端调用后端暴露的接口来进行数据获取,并在页面进行展示
技术难点
- 数据同步
- ES的检索的实现
- 精确定位MySQL表中的数据
任务目标
- 根据关键词进行全文检索
- 查询详情
实现过程
1. java读取Json文件,并导入MySQL数据库中
public List<Workticket> getWorkticket(){ObjectMapper objectMapper = new ObjectMapper();List<Workticket> jsonObjects = null;try {jsonObjects = objectMapper.readValue(new File("D:\\data_hanchuan\\workticket.json"), List.class);} catch (IOException e) {e.printStackTrace();}return jsonObjects;}
上述代码将json文件的数据封装成对象,然后调用MP的批量增加方法(deviceService.saveBatch(list);),将其添加到hanchuan数据库中
2. 利用Logstah完成MySQL到ES的数据同步
【注】Logstash、ES以及Kibana必须版本一致
主要参考logstash这篇博客,完成从MySQL到ES的数据同步。下面是其中的一张表的 .conf文件(几张表就对应几个conf文件)
input {stdin {}jdbc {type => "jdbc"# 数据库连接地址jdbc_connection_string => "jdbc:mysql://localhost:3306/hanchuan?characterEncoding=UTF-8&autoReconnect=true&allowPublicKeyRetrieval=true"# 数据库连接账号密码;jdbc_user => "root"jdbc_password => "root"# MySQL依赖包路径;jdbc_driver_library => "D:\apply_soft\elasticsearch_all_soft\logstash-7.6.1\bin\result\mysql-connector-j-8.0.31.jar"# the name of the driver class for mysqljdbc_driver_class => "com.mysql.jdbc.Driver"# 数据库重连尝试次数connection_retry_attempts => "3"# 判断数据库连接是否可用,默认false不开启jdbc_validate_connection => "true"# 数据库连接可用校验超时时间,默认3600Sjdbc_validation_timeout => "3600"# 开启分页查询(默认false不开启);jdbc_paging_enabled => "true"# 单次分页查询条数(默认100000,若字段较多且更新频率较高,建议调低此值);jdbc_page_size => "3000"# statement为查询数据sql,如果sql较复杂,建议配通过statement_filepath配置sql文件的存放路径;# sql_last_value为内置的变量,存放上次查询结果中最后一条数据tracking_column的值,此处即为ModifyTime;# statement_filepath => "mysql/jdbc.sql"statement => "SELECT id,defective_appearance,leakage_type,anbiao1,subsystem,duty_group,anbiao2,defective_why,elimination_person,department,accept_describe,accept_group from defect where id > :sql_last_value order by id desc"# 是否将字段名转换为小写,默认true(如果有数据序列化、反序列化需求,建议改为false);lowercase_column_names => false# Value can be any of: fatal,error,warn,info,debug,默认info;sql_log_level => warn## 是否记录上次执行结果,true表示会将上次执行结果的tracking_column字段的值保存到last_run_metadata_path指定的文件中;record_last_run => true# 需要记录查询结果某字段的值时,此字段为true,否则默认tracking_column为timestamp的值;use_column_value => true# 需要记录的字段,用于增量同步,需是数据库字段tracking_column => "id"# record_last_run上次数据存放位置;last_run_metadata_path => "result/defect/last_id.txt"# 是否清除last_run_metadata_path的记录,需要增量同步时此字段必须为false;clean_run => false## 同步频率(分 时 天 月 年),默认每分钟同步一次;schedule => "* * * * *"}
}filter {mutate { //挑选其中的一个字段充当title字段rename => {"defective_appearance" => "title"} //将其id值设置为”数据库表名001_id“ 方便之后查询详情接口的实现update => {"id" => "defect001_%{id}"}// 将其他字段填充到message字段当中add_field => {"message" =>["%{title};%{leakage_type};%{anbiao1};%{subsystem};%{duty_group};%{anbiao2};%{defective_why};%{elimination_person};%{department};%{accept_describe};%{accept_group};"]}//将多余字段删除,使表的结构始终呈现为{id,title,message}形式remove_field => ["leakage_type","anbiao1","subsystem","duty_group","anbiao2","defective_why","elimination_person","department","accept_describe","accept_group"]}}output {elasticsearch {# host => "192.168.1.1"# port => "9200"# 配置ES集群地址hosts => ["localhost:9200"]# 索引名字,必须小写index => "hanchuan001"}stdout {codec => json_lines}
}
最终我们ES中的数据结构就是下面这个样子
3. 开始编写功能接口
3.1 全文检索接口
@Overridepublic MetaTotal searchAllHighLight(String msg, int pageNo, int pageSize) throws IOException {if (pageNo <= 1) {pageNo = 1;}SearchRequest request = new SearchRequest(resultIndex);
// 进行搜索SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();boolQueryBuilder.must(QueryBuilders.matchQuery("message", msg)).should(QueryBuilders.matchQuery("title", msg));// sourceBuilder.size(2000);// 分页sourceBuilder.from(pageNo);sourceBuilder.size(pageSize);// 进行高亮设置HighlightBuilder highlightBuilder = new HighlightBuilder();HighlightBuilder.Field field = new HighlightBuilder.Field("message").preTags("<span style='color:red'>").postTags("</span>");HighlightBuilder.Field field1 = new HighlightBuilder.Field("title").preTags("<span style='color:red'>").postTags("</span>");highlightBuilder.field(field).field(field1);sourceBuilder.query(boolQueryBuilder);sourceBuilder.highlighter(highlightBuilder);// 加入到request中request.source(sourceBuilder);SearchResponse response = client.search(request, RequestOptions.DEFAULT);List<Meta> list = new ArrayList<>();for (SearchHit hit : response.getHits().getHits()) {//----进行高亮字段的替换Map<String, HighlightField> highlightFields = hit.getHighlightFields();HighlightField message = highlightFields.get("message");HighlightField title = highlightFields.get("title");// 未高亮之前的结果Map<String, Object> sourceAsMap = hit.getSourceAsMap();
// 1.找到message中出现关键字的地方进行高亮替换if (message != null) {Text[] fragments = message.fragments();String n_mess = "";for (Text text : fragments) {n_mess += text;}sourceAsMap.put("message", n_mess);}
// 2.找到title中出现关键字的地方进行高亮替换if (title != null) {Text[] fragments = title.fragments();String n_title = "";for (Text text : fragments) {n_title += text;}sourceAsMap.put("title", n_title);}//----结束----Meta meta = new Meta();try {BeanUtils.populate(meta, hit.getSourceAsMap());} catch (IllegalAccessException e) {throw new RuntimeException(e);} catch (InvocationTargetException e) {throw new RuntimeException(e);}list.add(meta);}MetaTotal metas = new MetaTotal();metas.setList(list);metas.setTotal(response.getHits().getTotalHits().value);System.out.println(metas.getTotal() + "总记录数");return metas;}
在业务逻辑代码写好之后在控制层暴露接口
@ResponseBody@GetMapping("/search/{keyword}/{pageNo}/{pageSize}")public Result searchByMsg(@PathVariable String keyword,@PathVariable int pageNo,@PathVariable int pageSize) throws IOException {MetaTotal metas = service.searchAllHighLight(keyword,pageNo,pageSize);Page<Meta> page = new Page<>(pageNo,pageSize);page.setRecords(metas.getList());page.setTotal(metas.getTotal());return new Result().code(200).message("查询成功").data("list",metas.getList()).data("total",metas.getTotal());}
3.2 查询详情
根据前端传递的id值,进行解析,找到对应的数据库表,进行详情查看。
@RequestMapping("/details/{id}")@ResponseBodypublic Result look_details2(@PathVariable("id") String id, Map<String,Object> map){String[] str = id.split("001_");if (str[0].equals("defect")){Defect defect = defectService.getById(str[1]);return new Result().code(200).message("详情结果").data("details",defect);} else if (str[0].equals("device")) {Device device = deviceService.getById(str[1]);return new Result().code(200).message("详情结果").data("details",device);} else if (str[0].equals("riskcontroller")) {Riskcontroller riskcontroller = riskControllerService.getById(str[1]);return new Result().code(200).message("详情结果").data("details",riskcontroller);}else if (str[0].equals("security")) {Security security = securityService.getById(str[1]);return new Result().code(200).message("详情结果").data("details",security);}else if (str[0].equals("workticket")) {Workticket workticket = workticketService.getById(str[1]);return new Result().code(200).message("详情结果").data("details",workticket);}return new Result().code(500).message("查询失败");}
4. 前端调用