数据结构与算法基础-(3)

 🌈write in front🌈
🧸大家好,我是Aileen🧸.希望你看完之后,能对你有所帮助,不足请指正!共同学习交流.
🆔本文由Aileen_0v0🧸 原创 CSDN首发🐒 如需转载还请通知⚠️
📝个人主页:Aileen_0v0🧸—CSDN博客
🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​
📣系列专栏:Aileen_0v0🧸的数据结构与算法学习系列专栏🌸——CSDN博客
🗼我的格言:"没有罗马,那就自己创造罗马💫~"

目录

回顾💫

List 列表数据类型常用操作性能

Dict字典数据类型常用操作性能 

P、NP、NPC、NP-hard问题详解

1. 多项式时间(Polynomial time)

2. 确定性算法与非确定性算法

确定性算法:

非确定性算法:

3. 规约/约化

4. P类问题、NP类问题、NPC问题

P类问题:

NP类问题:

NPC问题(NP-complete):

NP难问题:



回顾💫

"温故而知新"~

上回儿说到,什么是时间复杂度,空间复杂度,

以及变位词问题的四种解法,以及内置函数sorted和sort.()的内置函数拓展

不记得的朋友可以点击🔗http://t.csdn.cn/04nTx进行快速定位,接下来进行new knowledge 的学习

后面我们会用来实现各种数据结构

通过运行试验来估计其各种操作运行时间数量级

List 列表数据类型常用操作性能🍒

最常用的:按索引取值和赋值( v = a [i]-->取值操作, a [i] = v-->赋值操作)

由于 列表随机访问特性 , 这两个操作执行时间与列表大小无关 , 均为O(1)

另一个是列表增长, 可以选择append() 和  _add_() " + "

lst.append(v), 执行时间 O(1)

lst = lst + [V],列表中加一个列表, 执行时间是O(n+k),其中 k 是被加的列表长度

选择哪个方法来操作列表,决定了程序的性能

4种生成前n个整数列表的方法:

#首先是循环连接列表( + ) 方式生成
def test1():l = []for i in range(1000):l = l + [i]#然后用append方法添加元素生成
def test2():l = []for i in range(1000):l.append(i)#用列表推导式来生成
def test3():l = [i for i  in range(1000)]#最后 利用 range函数 调用转成 列表
def test4():l = list(range(1000))

Dict字典数据类型常用操作性能🍌 

P、NP、NPC、NP-hard问题详解🫐

 想要理解P问题、NP问题、NPC问题、NP-hard问题,需要先弄懂几个概念:

什么是多项式时间(inpolynomial多项式  time)?
什么是确定性算法?什么是非确定性算法?
什么是规约/约化?

1. 多项式时间(Polynomial time)🍈

时间复杂度是衡量算法执行效率的一个指标,它表示算法运行时间与问题规模之间的增长关系。通常用大O符号来表示。

常见的时间复杂度类型有:

  1. 常数阶 O(1)
  2. 对数阶 O(log n)
  3. 线性阶 O(n)
  4. 线性对数阶 O(n log n)
  5. 平方阶 O(n^2)
  6. 立方阶 O(n^3)
  7. 指数阶 O(2^n)
  8. 阶乘阶 O(n!)

  1. 常数时间复杂度 O(1):无论输入的数据规模如何变化,算法的执行时间都是恒定的                        示例:访问数组中固定下标的元素,或者执行单次的加减乘除运算等。
  2. 对数时间复杂度 O(log n):当输入规模增加时,算法执行时间相对于输入规模增加的比率不大。                                                                                                                                                    示例:二分查找算法
  3. 线性时间复杂度 O(n):算法执行时间与输入规模是正比的。                                                            示例:遍历一次长度为 n 的数组,或者进行一次循环 从1到n 累加求和等。
  4. 平方时间复杂度 O(n^2):算法执行时间与输入规模平方成正比。                                                    示例:双重循环嵌套的算法,比如冒泡排序、插入排序等。
  5. 指数时间复杂度 O(2^n):算法执行时间的增长率与输入规模的指数成正比。                                  示例:穷举算法,比如求解最长公共子序列问题的暴力算法。

还有其他更高阶的时间复杂度,比如阶乘时间复杂度 O(n!)递归时间复杂度 O(2^n) 等,但是这些复杂度通常不会出现在实际应用中,因为它们的执行时间会随着输入规模的增加而急剧增长,算法的效率非常低下。

O(1),O(ln(n)),O(n^a) 等,我们把它叫做多项式级复杂度,因为它的规模n出现在底数的位置;另一种像是 O(a^n) 和 O(n!) 等,它是非多项式级的复杂度,其复杂度计算机往往不能承受。当我们在解决一个问题时,我们选择的算法通常都需要是多项式级的复杂度,非多项式级的复杂度需要的时间太多,往往会超时,除非是数据规模非常小。

2. 确定性算法与非确定性算法🍑

确定性算法:

设A是求解问题B的一个解决算法,在算法的整个执行过程中,每一步都能得到一个确定的解,这样的算法就是确定性算法。

非确定性算法:

设A是求解问题B的一个解决算法,它将问题分解成两部分,分别为猜测阶段验证阶段,其中

  1. 猜测阶段:在这个阶段,对问题的一个特定的输入实例x产生一个任意字符串y,在算法的每一次运行时,y的值可能不同,因此,猜测以一种非确定的形式工作。
  2. 验证阶段:在这个阶段,用一个确定性算法(有限时间内)验证。                                       ①检查在猜测阶段产生的y是否是合适的形式,如果不是,则算法停下来并得到no;           ② 如果y是合适的形式,则验证它是否是问题的解,如果是,则算法停下来并得到yes,否则算法停下来并得到no。它是验证所猜测的解的正确性。

3. 规约/约化🍊

问题A可以约化为问题B,称为“问题A可规约为问题B”,可以理解为问题B的解一定就是问题A的解,因此解决A不会难于解决B。由此可知问题B的时间复杂度一定大于等于问题A。

 规约就是选择一个文法规则:X→ABC,依次从栈顶弹出C、B、A,再将X压进栈。规范规约是文法中句子的一个最右推导的逆过程,而最左推导对应的是最右规约 。

再例如《算法导论》中有一个例子:现在有两个问题:求解一个一元一次方程和求解一个一元二次方程。那么我们说,前者可以规约为后者,意即知道如何解一个一元二次方程那么一定能解出一元一次方程。我们可以写出两个程序分别对应两个问题,那么我们能找到一个“规则”,按照这个规则把解一元一次方程程序的输入数据变一下,用在解一元二次方程的程序上,两个程序总能得到一样的结果。这个规则即是:两个方程的对应项系数不变,一元二次方程的二次项系数为0。

从规约的定义中我们看到,一个问题规约为另一个问题,时间复杂度增加了,问题的应用范围也增大了。通过对某些问题的不断规约,我们能够不断寻找复杂度更高,但应用范围更广的算法来代替复杂度虽然低,但只能用于很小的一类问题的算法。存在这样一个NP问题,所有的NP问题都可以约化成它。换句话说,只要解决了这个问题,那么所有的NP问题都解决了。这种问题的存在难以置信,并且更加不可思议的是,这种问题不只一个,它有很多个,它是一类问题。这一类问题就是传说中的NPC问题,也就是NP-完全问题。

4. P类问题、NP类问题、NPC问题、NP难问题🍍

P类问题:

It is the set of problems which can be solved by some algorithms inpolynomial time.  --->能在多项式时间内可解的问题.

故事案例🌰:

柯尼斯堡七桥问题

18世纪初普鲁士的哥尼斯堡,有一条河穿过,河上有两个小岛,有七座桥把两个岛与河岸联系起来(如右上图)。有个人提出一个问题:一个步行者怎样才能不重复、不遗漏地一次走完七座桥,最后回到出发点。后来大数学家欧拉把它转化成一个几何问题(如左图下)——一笔画问题。他不仅解决了此问题,且给出了连通图可以一笔画的充要条件是:

⒈任意点连接的边数为偶数

⒉拥有奇数边点的个数为2或0.

⒊其他情况的图都不能一笔画出。(奇点数除以二便可算出此图需几笔画成。)

一起来玩游戏吧~

判断下图能否一笔画:

 

答案是没有解,因为只有当拥有奇数条边的顶点数量小于或者等于2个时才会有解,而图中有8个粉红色顶点有奇数条边,所以无解。

有解 

NP类问题:

lt is the set of problems which are not sure whether it can be solved bysome algorithms in polynomial time. But it is possible to verify the answer in polynomial time.  --->不确定可以在多项式时间内解决的问题.在多项式时间内“可验证”的问题。也就是说,不能判定这个问题到底有没有解,而是猜出一个解来在多项式时间内证明这个解是否正确。即该问题的猜测过程是不确定的,而对其某一个解的验证则能够在多项式时间内完成。P类问题属于NP问题,但NP类问题不一定属于P类问题。

故事案例🌰:

1859 年,爱尔兰数学家哈密尔顿(Hamilton)提出了一个“周游世界”的游戏

下图中(a),哈密顿提出的「周游世界」的游戏。把一个正十二面体的二十个顶点看成地球上的二十个城市。要求游戏者沿棱线走,寻找一条经过所有结点一次且仅一次的回路,(b)是其哈密顿图,哈密顿回路由实线标出。

简而言之,哈密尔顿回路是指,从图中的一个顶点出发,沿着边行走,经过图的每个顶点,且每个顶点仅访问一次,之后再回到起始点的一条路径。如上图所示,我们的起始点选定为 Washington DC,灰色实线构成的一条路径就是一条哈密尔顿回路。

在图论算法的领域中,哈密尔顿回路(Hamilton Loop)和路径(Hamilton Path)在定义上是有所区分的:

哈密尔顿回路(Hamilton Loop)要求从起始点出发并能回到起始点,其路径是一个环。

哈密尔顿路径(Hamilton Path)并不要求从起始点出发能够回到起始点,也就是说:起始顶点和终止顶点之间不要求有一条边。

比如上面这两个图,左图既存在哈密尔顿回路,也存在哈密尔顿路径。而右图只存在哈密尔顿路径,并不存在哈密尔顿回路。 

如何求解一个图是否存在哈密尔顿回路呢?

一个最直观的想法就是暴力求解。暴力求解的思路也很简单:我们遍历图的每一个顶点 v,然后从顶点 v 出发,看是否能够找到一条哈密尔顿回路。

暴力求解和求解全排列问题是等价的,其时间复杂度为 O ( N ! ) ,N 为图的顶点的个数。

O ( N ! ) 是一个非常高的复杂度,它并不是一个多项式级别的复杂度。像 O ( 1 ) , O(NlogN),O(N^2)这些我们常见的复杂度都是多项式级的复杂度,而O(a^N),O ( N ! )这些复杂度是非多项式级的,也就是说,在数据量 N 极大的情况下,我们的现代计算机是不能承受的。

那么除了暴力求解哈密尔顿回路问题,是否存在更好的算法?

很遗憾的是,对于哈密尔顿问题,目前并没有多项式级别的算法。我们只能在暴力破解的基础上,尽量去做到更多的优化,譬如回溯剪枝,记忆化搜索等,但是,还没有找到一种多项式级别的算法来解决哈密尔顿问题。

通常,这类问题也被称为 NP(Non-deterministic Polynomial)难问题。

NPC问题(NP-complete):

they are the problems which are the hardest in NP. If they can be solved in polynomial time, all NP problem can be solved inpolynomial time.存在这样一个NP问题,所有的NP问题都可以约化成它。换句话说,只要解决了这个问题,那么所有的NP问题都解决了。其定义要满足2个条件:

  1. 它是一个NP问题;
  2. 所有NP问题都能规约到它。

故事案例🌰:

设有p个城镇,已知每两个城镇之间的距离,一个售货员从某一城镇出发巡回售货,问这个售货员应如何选择路线,能使每个城镇经过一次且仅一次,最后返回到出发地,而使总的行程最短?这个问题称为旅行售货员问题。 

NP难问题:

NP-Hard问题是这样一种问题,它满足NPC问题定义的第二条但不一定要满足第一条(就是说,NP-Hard问题要比 NPC问题的范围广,NP-Hard问题没有限定属于NP),即所有的NP问题都能约化到它,但是他不一定是一个NP问题。NP-Hard问题同样难以找到多项式的算法,但它不列入我们的研究范围,因为它不一定是NP问题。即使NPC问题发现了多项式级的算法,NP-Hard问题有可能仍然无法得到多项式级的算法。事实上,由于NP-Hard放宽了限定条件,它将有可能比所有的NPC问题的时间复杂度更高从而更难以解决

上面四个问题的关系图: 

🐻今天的内容就分享到这里啦~🐻

🐻喜欢就三连一下呗~🐻

🐻感谢支持💖!🐻

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/88910.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【计算机网络】DNS原理介绍

文章目录 DNS提供的服务DNS的工作机理DNS查询过程DNS缓存 DNS记录和报文DNS记录DNS报文针对DNS服务的攻击 DNS提供的服务 DNS,即域名系统(Domain Name System) 提供的服务 一种实现从主机名到IP地址转换的目录服务,为Internet上的用户应用程序以及其他…

Pycharm在进行debug时出现collecting data如何解决?

Pycharm在进行debug时变量界面出现collecting data,问题如下: 解决方法:打开Setting界面,在Python Debugger选项中勾选下图中的Gevent compatible即可。

初识ebpf

介绍eBPF技术 当代计算机系统中,性能、安全性和可观察性是至关重要的关键因素。为了应对这些挑战,Linux 内核引入了一种名为eBPF(extended Berkeley Packet Filter)的强大技术。eBPF 不仅仅是一种网络数据包过滤器,它…

笔记1-2:

一、磁荷与磁流的引入 麦克斯韦方程组: 引入磁荷和磁流的概念,上述方程可以写成对称形式: 磁荷和磁流实际上不存在,只具有某种等效意义,可以把某个区域中的电磁场看成是由一组等效磁型源所产生。 对于均匀和各向同性…

gpt扣款失败,openai扣款失败无法使用-如何解决gpt扣款失败的问题?

gpt扣款失败,openai扣款失败无法使用。毕竟你花了钱却无法使用你所期待的服务,这种情况确实令人不快。但是, 为什么gpt扣款失败? 可能是由于支付问题导致的扣款失败。这包括信用卡额度不足、支付信息错误等等。如果你的支付信息…

DolphinDB x 龙蜥社区,打造多样化的数据底座

近日,浙江智臾科技有限公司(以下简称“DolphinDB”)正式签署 CLA 贡献者许可协议,加入龙蜥社区(OpenAnolis)。 DolphinDB 主创团队从 2012 年开始投入研发产品。作为一款基于高性能时序数据库,D…

LeetCode 1194.锦标赛优胜者

数据准备 Create table If Not Exists Players (player_id int, group_id int); Create table If Not Exists Matches (match_id int, first_player int, second_player int, first_score int, second_score int); Truncate table Players; insert into Players (player_id, g…

9+铜死亡+缺氧+分型+单细胞+实验生信思路

今天给同学们分享一篇铜死亡缺氧分型实验的生信文章“Unraveling Colorectal Cancer and Pan-cancer Immune Heterogeneity and Synthetic Therapy Response Using Cuproptosis and Hypoxia Regulators by Multi-omic Analysis and Experimental Validation”,这篇文…

ElasticSearch深度分页解决方案

文章目录 概要ElasticSearch介绍es分页方法es分页性能对比表方案对比 From/Size参数深度分页问题Scroll#性能对比向前翻页 总结个人思考 概要 好久没更新文章了,最近研究了一下es的深分页解决方案。和大家分享一下,祝大家国庆节快乐。 ElasticSearch介…

WorkPlus Meet:高效私有音视频会议,助力多场景协作

在当今数字化时代,远程协作和在线教育需求不断增长,企业和教育机构需要可靠的音视频会议工具来满足各种场景的需求。WorkPlus Meet,作为一款私有化音视频会议软件,强大而多功能,为用户提供了流畅的百人会议、实时协作、…

firefox_dev_linux下载安装配置(部分系统自带包请看结尾)

download 从 Firefox 的官方网站下载 Firefox Developer Edition 的 tar 文件 firefox_dev_linux_download # 终端快速下载 wget https://download.mozilla.org/?productfirefox-devedition-latest-ssl&oslinux64&langen-US彻底删除自带原版 # apt系 sudo apt --pu…

SpringBoot之异常处理

文章目录 前言一、默认规则二、定制异常处理处理自定义错误页面ControllerAdviceExceptionHandler处理全局异常ResponseStatus自定义异常自定义实现 HandlerExceptionResolver 处理异常 三、异常处理自动配置原理四、异常处理流程总结 前言 包含SpringBoot默认处理规则、如何定…

ubuntu x86_64 源码编译 rust 1.48.0

源码地址 GitHub - rust-lang/rust: Empowering everyone to build reliable and efficient software. git clone https://github.com/rust-lang/rust cd rust git checkout 1.48.0 ./configure ./x.py build 安装前执行cargo vendor yeqiangyeqiang-MS-7B23:~/Downloads/sr…

数据备份文件生成--根据表名生成对应的sql语句文件

最近客户有个需求,希望在后台增加手动备份功能,将数据导出下载保存。 当然,此方法不适用于海量数据的备份,这只适用于少量数据的sql备份。 这是我生成的sql文件,以及sql文件里的insert语句,已亲测&#x…

C++基于Qt中QOpenGLWidget模块实现的画图板源码+可执行文件

基于Qt中QOpenGLWidget模块实现的画图板 一、系统概述 本系统拟完成一个画图板,对多种常见图形进行基本操作系统功能 二维图形的输入:可输入或全部清除直线、矩形、圆、椭圆、多边形、文本等二维图形的变换:在直线、矩形、圆、椭圆、多边形…

【AI视野·今日NLP 自然语言处理论文速览 第四十期】Mon, 25 Sep 2023

AI视野今日CS.NLP 自然语言处理论文速览 Mon, 25 Sep 2023 Totally 46 papers 👉上期速览✈更多精彩请移步主页 Daily Computation and Language Papers ReConcile: Round-Table Conference Improves Reasoning via Consensus among Diverse LLMs Authors Justin C…

基于微信小程序的民宿短租酒店预订系统设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言系统主要功能:具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序(小蔡coding)有保障的售后福利 代码参考源码获取 前言 💗博主介绍:✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计…

【斯坦福cs324w】中译版 大模型学习笔记九 大模型之Adaptation

文章目录 引言Adaptation的必要性从llm的训练过程分析从下游任务和原始训练任务之间的差异分析 通用的Adaptation配置 当前主流的Adaptation方法ProbingFine-tuningLightweight Fine-tuningPrompt TuningPrefix TuningAdapter Tuning 参考资料 在特定领域的下游任务中&#xff…

使用Python做一个微信机器人

介绍 简介 该程序将微信的内部功能提取出来,然后在程序里加载Python,接着将这些功能导出成库函数,就可以在Python里使用这些函数 程序启动的时候会执行py_code目录下的main.py,类似于你在命令行使用python main.py。 现在会以…

vue + openlayer 按路径移动

示例 创建一个方形的规矩&#xff0c;并让点按轨迹移动。效果如下: 源代码 <template><div><div id"map" class"map"></div><button id"start-animation" ref"startButton">Start Animation</bu…