pytorch加载预训练权重失败

问题

给当前模型换了个开源的主干网络,并且删除了某些层后,但是发现预训练权重一直加载不上。strict为True时加载报错,strict为False时又什么都加载不上,然后不知道哪里出问题了。

解决

当strict为False时,load_state_dict函数会返回一个字典,该字典含有以下两个键:

missing_keys:在当前模型中存在,但在预训练权重中不存在的键。
unexpected_keys:在当前模型不存在,但在预训练权重中存在的键。
        result=self.backbone.load_state_dict(model_weight,strict=False)print("Missing keys:", result.missing_keys)print("Unexpected keys:", result.unexpected_keys)

得到输出:

Missing keys: ['model.patch_embed.conv1.weight', 'model.patch_embed.conv1.bias', 'model.patch_embed.norm1.1.weight', 'model.patch_embed.norm1.1.bias', 'model.patch_embed.conv2.weight', 'model.patch_embed.conv2.bias', 'model.patch_embed.norm2.1.weight', 'model.patch_embed.norm2.1.bias', 'model.levels.0.blocks.0.norm1.0.weight', 'model.levels.0.blocks.0.norm1.0.bias', 'model.levels.0.blocks.0.dcn.offset_mask.weight', 'model.levels.0.blocks.0.dcn.offset_mask.bias', 'model.levels.0.blocks.0.dcn.value_proj.weight', 'model.levels.0.blocks.0.dcn.value_proj.bias', 'model.levels.0.blocks.0.dcn.output_proj.weight', 'model.levels.0.blocks.0.norm2.0.weight', 'model.levels.0.blocks.0.norm2.0.bias', 'model.levels.0.blocks.0.mlp.fc1.weight', 'model.levels.0.blocks.0.mlp.fc1.bias', 'model.levels.0.blocks.0.mlp.fc2.weight', 'model.levels.0.blocks.1.norm1.0.weight', 'model.levels.0.blocks.1.norm1.0.bias', 'model.levels.0.blocks.1.dcn.offset_mask.weight', 'model.levels.0.blocks.1.dcn.offset_mask.bias', 'model.levels.0.blocks.1.dcn.value_proj.weight', 'model.levels.0.blocks.1.dcn.value_proj.bias', 'model.levels.0.blocks.1.dcn.output_proj.weight', 'model.levels.0.blocks.1.norm2.0.weight', 'model.levels.0.blocks.1.norm2.0.bias', 'model.levels.0.blocks.1.mlp.fc1.weight', 'model.levels.0.blocks.1.mlp.fc1.bias', 'model.levels.0.blocks.1.mlp.fc2.weight', 'model.levels.0.blocks.2.norm1.0.weight', 'model.levels.0.blocks.2.norm1.0.bias', 'model.levels.0.blocks.2.dcn.offset_mask.weight', 'model.levels.0.blocks.2.dcn.offset_mask.bias', 'model.levels.0.blocks.2.dcn.value_proj.weight', 'model.levels.0.blocks.2.dcn.value_proj.bias', 'model.levels.0.blocks.2.dcn.output_proj.weight', 'model.levels.0.blocks.2.norm2.0.weight', 'model.levels.0.blocks.2.norm2.0.bias', 'model.levels.0.blocks.2.mlp.fc1.weight', 'model.levels.0.blocks.2.mlp.fc1.bias', 'model.levels.0.blocks.2.mlp.fc2.weight', 'model.levels.0.blocks.3.norm1.0.weight', 'model.levels.0.blocks.3.norm1.0.bias', 'model.levels.0.blocks.3.dcn.offset_mask.weight', 'model.levels.0.blocks.3.dcn.offset_mask.bias', 'model.levels.0.blocks.3.dcn.value_proj.weight', 'model.levels.0.blocks.3.dcn.value_proj.bias', 'model.levels.0.blocks.3.dcn.output_proj.weight', 'model.levels.0.blocks.3.norm2.0.weight', 'model.levels.0.blocks.3.norm2.0.bias', 'model.levels.0.blocks.3.mlp.fc1.weight', 'model.levels.0.blocks.3.mlp.fc1.bias', 'model.levels.0.blocks.3.mlp.fc2.weight', 'model.levels.0.norm.0.weight', 'model.levels.0.norm.0.bias', 'model.levels.0.downsample.conv.weight', 'model.levels.0.downsample.norm.1.weight', 'model.levels.0.downsample.norm.1.bias', 'model.levels.1.blocks.0.norm1.0.weight', 'model.levels.1.blocks.0.norm1.0.bias', 'model.levels.1.blocks.0.dcn.offset_mask.weight', 'model.levels.1.blocks.0.dcn.offset_mask.bias', 'model.levels.1.blocks.0.dcn.value_proj.weight', 'model.levels.1.blocks.0.dcn.value_proj.bias', 'model.levels.1.blocks.0.dcn.output_proj.weight', 'model.levels.1.blocks.0.norm2.0.weight', 'model.levels.1.blocks.0.norm2.0.bias', 'model.levels.1.blocks.0.mlp.fc1.weight', 'model.levels.1.blocks.0.mlp.fc1.bias', 'model.levels.1.blocks.0.mlp.fc2.weight', 'model.levels.1.blocks.1.norm1.0.weight', 'model.levels.1.blocks.1.norm1.0.bias', 'model.levels.1.blocks.1.dcn.offset_mask.weight', 'model.levels.1.blocks.1.dcn.offset_mask.bias', 'model.levels.1.blocks.1.dcn.value_proj.weight', 'model.levels.1.blocks.1.dcn.value_proj.bias', 'model.levels.1.blocks.1.dcn.output_proj.weight', 'model.levels.1.blocks.1.norm2.0.weight', 'model.levels.1.blocks.1.norm2.0.bias', 'model.levels.1.blocks.1.mlp.fc1.weight', 'model.levels.1.blocks.1.mlp.fc1.bias', 'model.levels.1.blocks.1.mlp.fc2.weight', 'model.levels.1.blocks.2.norm1.0.weight', 'model.levels.1.blocks.2.norm1.0.bias', 'model.levels.1.blocks.2.dcn.offset_mask.weight', 'model.levels.1.blocks.2.dcn.offset_mask.bias', 'model.levels.1.blocks.2.dcn.value_proj.weight', 'model.levels.1.blocks.2.dcn.value_proj.bias', 'model.levels.1.blocks.2.dcn.output_proj.weight', 'model.levels.1.blocks.2.norm2.0.weight', 'model.levels.1.blocks.2.norm2.0.bias', 'model.levels.1.blocks.2.mlp.fc1.weight', 'model.levels.1.blocks.2.mlp.fc1.bias', 'model.levels.1.blocks.2.mlp.fc2.weight', 'model.levels.1.blocks.3.norm1.0.weight', 'model.levels.1.blocks.3.norm1.0.bias', 'model.levels.1.blocks.3.dcn.offset_mask.weight', 'model.levels.1.blocks.3.dcn.offset_mask.bias', 'model.levels.1.blocks.3.dcn.value_proj.weight', 'model.levels.1.blocks.3.dcn.value_proj.bias', 'model.levels.1.blocks.3.dcn.output_proj.weight', 'model.levels.1.blocks.3.norm2.0.weight', 'model.levels.1.blocks.3.norm2.0.bias', 'model.levels.1.blocks.3.mlp.fc1.weight', 'model.levels.1.blocks.3.mlp.fc1.bias', 'model.levels.1.blocks.3.mlp.fc2.weight', 'model.levels.1.norm.0.weight', 'model.levels.1.norm.0.bias', 'model.levels.1.downsample.conv.weight', 'model.levels.1.downsample.norm.1.weight', 'model.levels.1.downsample.norm.1.bias', 'model.levels.2.blocks.0.norm1.0.weight', 'model.levels.2.blocks.0.norm1.0.bias', 'model.levels.2.blocks.0.dcn.offset_mask.weight', 'model.levels.2.blocks.0.dcn.offset_mask.bias', 'model.levels.2.blocks.0.dcn.value_proj.weight', 'model.levels.2.blocks.0.dcn.value_proj.bias', 'model.levels.2.blocks.0.dcn.output_proj.weight', 'model.levels.2.blocks.0.norm2.0.weight', 'model.levels.2.blocks.0.norm2.0.bias', 'model.levels.2.blocks.0.mlp.fc1.weight', 'model.levels.2.blocks.0.mlp.fc1.bias', 'model.levels.2.blocks.0.mlp.fc2.weight', 'model.levels.2.blocks.1.norm1.0.weight', 'model.levels.2.blocks.1.norm1.0.bias', 'model.levels.2.blocks.1.dcn.offset_mask.weight', 'model.levels.2.blocks.1.dcn.offset_mask.bias', 'model.levels.2.blocks.1.dcn.value_proj.weight', 'model.levels.2.blocks.1.dcn.value_proj.bias', 'model.levels.2.blocks.1.dcn.output_proj.weight', 'model.levels.2.blocks.1.norm2.0.weight', 'model.levels.2.blocks.1.norm2.0.bias', 'model.levels.2.blocks.1.mlp.fc1.weight', 'model.levels.2.blocks.1.mlp.fc1.bias', 'model.levels.2.blocks.1.mlp.fc2.weight', 'model.levels.2.blocks.2.norm1.0.weight', 'model.levels.2.blocks.2.norm1.0.bias', 'model.levels.2.blocks.2.dcn.offset_mask.weight', 'model.levels.2.blocks.2.dcn.offset_mask.bias', 'model.levels.2.blocks.2.dcn.value_proj.weight', 'model.levels.2.blocks.2.dcn.value_proj.bias', 'model.levels.2.blocks.2.dcn.output_proj.weight', 'model.levels.2.blocks.2.norm2.0.weight', 'model.levels.2.blocks.2.norm2.0.bias', 'model.levels.2.blocks.2.mlp.fc1.weight', 'model.levels.2.blocks.2.mlp.fc1.bias', 'model.levels.2.blocks.2.mlp.fc2.weight', 'model.levels.2.blocks.3.norm1.0.weight', 'model.levels.2.blocks.3.norm1.0.bias', 'model.levels.2.blocks.3.dcn.offset_mask.weight', 'model.levels.2.blocks.3.dcn.offset_mask.bias', 'model.levels.2.blocks.3.dcn.value_proj.weight', 'model.levels.2.blocks.3.dcn.value_proj.bias', 'model.levels.2.blocks.3.dcn.output_proj.weight', 'model.levels.2.blocks.3.norm2.0.weight', 'model.levels.2.blocks.3.norm2.0.bias', 'model.levels.2.blocks.3.mlp.fc1.weight', 'model.levels.2.blocks.3.mlp.fc1.bias', 'model.levels.2.blocks.3.mlp.fc2.weight', 'model.levels.2.blocks.4.norm1.0.weight', 'model.levels.2.blocks.4.norm1.0.bias', 'model.levels.2.blocks.4.dcn.offset_mask.weight', 'model.levels.2.blocks.4.dcn.offset_mask.bias', 'model.levels.2.blocks.4.dcn.value_proj.weight', 'model.levels.2.blocks.4.dcn.value_proj.bias', 'model.levels.2.blocks.4.dcn.output_proj.weight', 'model.levels.2.blocks.4.norm2.0.weight', 'model.levels.2.blocks.4.norm2.0.bias', 'model.levels.2.blocks.4.mlp.fc1.weight', 'model.levels.2.blocks.4.mlp.fc1.bias', 'model.levels.2.blocks.4.mlp.fc2.weight', 'model.levels.2.blocks.5.norm1.0.weight', 'model.levels.2.blocks.5.norm1.0.bias', 'model.levels.2.blocks.5.dcn.offset_mask.weight', 'model.levels.2.blocks.5.dcn.offset_mask.bias', 'model.levels.2.blocks.5.dcn.value_proj.weight', 'model.levels.2.blocks.5.dcn.value_proj.bias', 'model.levels.2.blocks.5.dcn.output_proj.weight', 'model.levels.2.blocks.5.norm2.0.weight', 'model.levels.2.blocks.5.norm2.0.bias', 'model.levels.2.blocks.5.mlp.fc1.weight', 'model.levels.2.blocks.5.mlp.fc1.bias', 'model.levels.2.blocks.5.mlp.fc2.weight', 'model.levels.2.blocks.6.norm1.0.weight', 'model.levels.2.blocks.6.norm1.0.bias', 'model.levels.2.blocks.6.dcn.offset_mask.weight', 'model.levels.2.blocks.6.dcn.offset_mask.bias', 'model.levels.2.blocks.6.dcn.value_proj.weight', 'model.levels.2.blocks.6.dcn.value_proj.bias', 'model.levels.2.blocks.6.dcn.output_proj.weight', 'model.levels.2.blocks.6.norm2.0.weight', 'model.levels.2.blocks.6.norm2.0.bias', 'model.levels.2.blocks.6.mlp.fc1.weight', 'model.levels.2.blocks.6.mlp.fc1.bias', 'model.levels.2.blocks.6.mlp.fc2.weight', 'model.levels.2.blocks.7.norm1.0.weight', 'model.levels.2.blocks.7.norm1.0.bias', 'model.levels.2.blocks.7.dcn.offset_mask.weight', 'model.levels.2.blocks.7.dcn.offset_mask.bias', 'model.levels.2.blocks.7.dcn.value_proj.weight', 'model.levels.2.blocks.7.dcn.value_proj.bias', 'model.levels.2.blocks.7.dcn.output_proj.weight', 'model.levels.2.blocks.7.norm2.0.weight', 'model.levels.2.blocks.7.norm2.0.bias', 'model.levels.2.blocks.7.mlp.fc1.weight', 'model.levels.2.blocks.7.mlp.fc1.bias', 'model.levels.2.blocks.7.mlp.fc2.weight', 'model.levels.2.blocks.8.norm1.0.weight', 'model.levels.2.blocks.8.norm1.0.bias', 'model.levels.2.blocks.8.dcn.offset_mask.weight', 'model.levels.2.blocks.8.dcn.offset_mask.bias', 'model.levels.2.blocks.8.dcn.value_proj.weight', 'model.levels.2.blocks.8.dcn.value_proj.bias', 'model.levels.2.blocks.8.dcn.output_proj.weight', 'model.levels.2.blocks.8.norm2.0.weight', 'model.levels.2.blocks.8.norm2.0.bias', 'model.levels.2.blocks.8.mlp.fc1.weight', 'model.levels.2.blocks.8.mlp.fc1.bias', 'model.levels.2.blocks.8.mlp.fc2.weight', 'model.levels.2.blocks.9.norm1.0.weight', 'model.levels.2.blocks.9.norm1.0.bias', 'model.levels.2.blocks.9.dcn.offset_mask.weight', 'model.levels.2.blocks.9.dcn.offset_mask.bias', 'model.levels.2.blocks.9.dcn.value_proj.weight', 'model.levels.2.blocks.9.dcn.value_proj.bias', 'model.levels.2.blocks.9.dcn.output_proj.weight', 'model.levels.2.blocks.9.norm2.0.weight', 'model.levels.2.blocks.9.norm2.0.bias', 'model.levels.2.blocks.9.mlp.fc1.weight', 'model.levels.2.blocks.9.mlp.fc1.bias', 'model.levels.2.blocks.9.mlp.fc2.weight', 'model.levels.2.blocks.10.norm1.0.weight', 'model.levels.2.blocks.10.norm1.0.bias', 'model.levels.2.blocks.10.dcn.offset_mask.weight', 'model.levels.2.blocks.10.dcn.offset_mask.bias', 'model.levels.2.blocks.10.dcn.value_proj.weight', 'model.levels.2.blocks.10.dcn.value_proj.bias', 'model.levels.2.blocks.10.dcn.output_proj.weight', 'model.levels.2.blocks.10.norm2.0.weight', 'model.levels.2.blocks.10.norm2.0.bias', 'model.levels.2.blocks.10.mlp.fc1.weight', 'model.levels.2.blocks.10.mlp.fc1.bias', 'model.levels.2.blocks.10.mlp.fc2.weight', 'model.levels.2.blocks.11.norm1.0.weight', 'model.levels.2.blocks.11.norm1.0.bias', 'model.levels.2.blocks.11.dcn.offset_mask.weight', 'model.levels.2.blocks.11.dcn.offset_mask.bias', 'model.levels.2.blocks.11.dcn.value_proj.weight', 'model.levels.2.blocks.11.dcn.value_proj.bias', 'model.levels.2.blocks.11.dcn.output_proj.weight', 'model.levels.2.blocks.11.norm2.0.weight', 'model.levels.2.blocks.11.norm2.0.bias', 'model.levels.2.blocks.11.mlp.fc1.weight', 'model.levels.2.blocks.11.mlp.fc1.bias', 'model.levels.2.blocks.11.mlp.fc2.weight', 'model.levels.2.blocks.12.norm1.0.weight', 'model.levels.2.blocks.12.norm1.0.bias', 'model.levels.2.blocks.12.dcn.offset_mask.weight', 'model.levels.2.blocks.12.dcn.offset_mask.bias', 'model.levels.2.blocks.12.dcn.value_proj.weight', 'model.levels.2.blocks.12.dcn.value_proj.bias', 'model.levels.2.blocks.12.dcn.output_proj.weight', 'model.levels.2.blocks.12.norm2.0.weight', 'model.levels.2.blocks.12.norm2.0.bias', 'model.levels.2.blocks.12.mlp.fc1.weight', 'model.levels.2.blocks.12.mlp.fc1.bias', 'model.levels.2.blocks.12.mlp.fc2.weight', 'model.levels.2.blocks.13.norm1.0.weight', 'model.levels.2.blocks.13.norm1.0.bias', 'model.levels.2.blocks.13.dcn.offset_mask.weight', 'model.levels.2.blocks.13.dcn.offset_mask.bias', 'model.levels.2.blocks.13.dcn.value_proj.weight', 'model.levels.2.blocks.13.dcn.value_proj.bias', 'model.levels.2.blocks.13.dcn.output_proj.weight', 'model.levels.2.blocks.13.norm2.0.weight', 'model.levels.2.blocks.13.norm2.0.bias', 'model.levels.2.blocks.13.mlp.fc1.weight', 'model.levels.2.blocks.13.mlp.fc1.bias', 'model.levels.2.blocks.13.mlp.fc2.weight', 'model.levels.2.blocks.14.norm1.0.weight', 'model.levels.2.blocks.14.norm1.0.bias', 'model.levels.2.blocks.14.dcn.offset_mask.weight', 'model.levels.2.blocks.14.dcn.offset_mask.bias', 'model.levels.2.blocks.14.dcn.value_proj.weight', 'model.levels.2.blocks.14.dcn.value_proj.bias', 'model.levels.2.blocks.14.dcn.output_proj.weight', 'model.levels.2.blocks.14.norm2.0.weight', 'model.levels.2.blocks.14.norm2.0.bias', 'model.levels.2.blocks.14.mlp.fc1.weight', 'model.levels.2.blocks.14.mlp.fc1.bias', 'model.levels.2.blocks.14.mlp.fc2.weight', 'model.levels.2.blocks.15.norm1.0.weight', 'model.levels.2.blocks.15.norm1.0.bias', 'model.levels.2.blocks.15.dcn.offset_mask.weight', 'model.levels.2.blocks.15.dcn.offset_mask.bias', 'model.levels.2.blocks.15.dcn.value_proj.weight', 'model.levels.2.blocks.15.dcn.value_proj.bias', 'model.levels.2.blocks.15.dcn.output_proj.weight', 'model.levels.2.blocks.15.norm2.0.weight', 'model.levels.2.blocks.15.norm2.0.bias', 'model.levels.2.blocks.15.mlp.fc1.weight', 'model.levels.2.blocks.15.mlp.fc1.bias', 'model.levels.2.blocks.15.mlp.fc2.weight', 'model.levels.2.blocks.16.norm1.0.weight', 'model.levels.2.blocks.16.norm1.0.bias', 'model.levels.2.blocks.16.dcn.offset_mask.weight', 'model.levels.2.blocks.16.dcn.offset_mask.bias', 'model.levels.2.blocks.16.dcn.value_proj.weight', 'model.levels.2.blocks.16.dcn.value_proj.bias', 'model.levels.2.blocks.16.dcn.output_proj.weight', 'model.levels.2.blocks.16.norm2.0.weight', 'model.levels.2.blocks.16.norm2.0.bias', 'model.levels.2.blocks.16.mlp.fc1.weight', 'model.levels.2.blocks.16.mlp.fc1.bias', 'model.levels.2.blocks.16.mlp.fc2.weight', 'model.levels.2.blocks.17.norm1.0.weight', 'model.levels.2.blocks.17.norm1.0.bias', 'model.levels.2.blocks.17.dcn.offset_mask.weight', 'model.levels.2.blocks.17.dcn.offset_mask.bias', 'model.levels.2.blocks.17.dcn.value_proj.weight', 'model.levels.2.blocks.17.dcn.value_proj.bias', 'model.levels.2.blocks.17.dcn.output_proj.weight', 'model.levels.2.blocks.17.norm2.0.weight', 'model.levels.2.blocks.17.norm2.0.bias', 'model.levels.2.blocks.17.mlp.fc1.weight', 'model.levels.2.blocks.17.mlp.fc1.bias', 'model.levels.2.blocks.17.mlp.fc2.weight', 'model.levels.2.norm.0.weight', 'model.levels.2.norm.0.bias', 'model.levels.2.downsample.conv.weight', 'model.levels.2.downsample.norm.1.weight', 'model.levels.2.downsample.norm.1.bias', 'model.levels.3.blocks.0.norm1.0.weight', 'model.levels.3.blocks.0.norm1.0.bias', 'model.levels.3.blocks.0.dcn.offset_mask.weight', 'model.levels.3.blocks.0.dcn.offset_mask.bias', 'model.levels.3.blocks.0.dcn.value_proj.weight', 'model.levels.3.blocks.0.dcn.value_proj.bias', 'model.levels.3.blocks.0.dcn.output_proj.weight', 'model.levels.3.blocks.0.norm2.0.weight', 'model.levels.3.blocks.0.norm2.0.bias', 'model.levels.3.blocks.0.mlp.fc1.weight', 'model.levels.3.blocks.0.mlp.fc1.bias', 'model.levels.3.blocks.0.mlp.fc2.weight', 'model.levels.3.blocks.1.norm1.0.weight', 'model.levels.3.blocks.1.norm1.0.bias', 'model.levels.3.blocks.1.dcn.offset_mask.weight', 'model.levels.3.blocks.1.dcn.offset_mask.bias', 'model.levels.3.blocks.1.dcn.value_proj.weight', 'model.levels.3.blocks.1.dcn.value_proj.bias', 'model.levels.3.blocks.1.dcn.output_proj.weight', 'model.levels.3.blocks.1.norm2.0.weight', 'model.levels.3.blocks.1.norm2.0.bias', 'model.levels.3.blocks.1.mlp.fc1.weight', 'model.levels.3.blocks.1.mlp.fc1.bias', 'model.levels.3.blocks.1.mlp.fc2.weight', 'model.levels.3.blocks.2.norm1.0.weight', 'model.levels.3.blocks.2.norm1.0.bias', 'model.levels.3.blocks.2.dcn.offset_mask.weight', 'model.levels.3.blocks.2.dcn.offset_mask.bias', 'model.levels.3.blocks.2.dcn.value_proj.weight', 'model.levels.3.blocks.2.dcn.value_proj.bias', 'model.levels.3.blocks.2.dcn.output_proj.weight', 'model.levels.3.blocks.2.norm2.0.weight', 'model.levels.3.blocks.2.norm2.0.bias', 'model.levels.3.blocks.2.mlp.fc1.weight', 'model.levels.3.blocks.2.mlp.fc1.bias', 'model.levels.3.blocks.2.mlp.fc2.weight', 'model.levels.3.blocks.3.norm1.0.weight', 'model.levels.3.blocks.3.norm1.0.bias', 'model.levels.3.blocks.3.dcn.offset_mask.weight', 'model.levels.3.blocks.3.dcn.offset_mask.bias', 'model.levels.3.blocks.3.dcn.value_proj.weight', 'model.levels.3.blocks.3.dcn.value_proj.bias', 'model.levels.3.blocks.3.dcn.output_proj.weight', 'model.levels.3.blocks.3.norm2.0.weight', 'model.levels.3.blocks.3.norm2.0.bias', 'model.levels.3.blocks.3.mlp.fc1.weight', 'model.levels.3.blocks.3.mlp.fc1.bias', 'model.levels.3.blocks.3.mlp.fc2.weight', 'model.levels.3.norm.0.weight', 'model.levels.3.norm.0.bias', 'model.conv_head.0.weight', 'model.conv_head.1.0.weight', 'model.conv_head.1.0.bias', 'model.conv_head.1.0.running_mean', 'model.conv_head.1.0.running_var']
Unexpected keys: ['patch_embed.conv1.weight', 'patch_embed.conv1.bias', 'patch_embed.norm1.1.weight', 'patch_embed.norm1.1.bias', 'patch_embed.conv2.weight', 'patch_embed.conv2.bias', 'patch_embed.norm2.1.weight', 'patch_embed.norm2.1.bias', 'levels.0.blocks.0.norm1.0.weight', 'levels.0.blocks.0.norm1.0.bias', 'levels.0.blocks.0.dcn.offset_mask.weight', 'levels.0.blocks.0.dcn.offset_mask.bias', 'levels.0.blocks.0.dcn.value_proj.weight', 'levels.0.blocks.0.dcn.value_proj.bias', 'levels.0.blocks.0.dcn.output_proj.weight', 'levels.0.blocks.0.norm2.0.weight', 'levels.0.blocks.0.norm2.0.bias', 'levels.0.blocks.0.mlp.fc1.weight', 'levels.0.blocks.0.mlp.fc1.bias', 'levels.0.blocks.0.mlp.fc2.weight', 'levels.0.blocks.1.norm1.0.weight', 'levels.0.blocks.1.norm1.0.bias', 'levels.0.blocks.1.dcn.offset_mask.weight', 'levels.0.blocks.1.dcn.offset_mask.bias', 'levels.0.blocks.1.dcn.value_proj.weight', 'levels.0.blocks.1.dcn.value_proj.bias', 'levels.0.blocks.1.dcn.output_proj.weight', 'levels.0.blocks.1.norm2.0.weight', 'levels.0.blocks.1.norm2.0.bias', 'levels.0.blocks.1.mlp.fc1.weight', 'levels.0.blocks.1.mlp.fc1.bias', 'levels.0.blocks.1.mlp.fc2.weight', 'levels.0.blocks.2.norm1.0.weight', 'levels.0.blocks.2.norm1.0.bias', 'levels.0.blocks.2.dcn.offset_mask.weight', 'levels.0.blocks.2.dcn.offset_mask.bias', 'levels.0.blocks.2.dcn.value_proj.weight', 'levels.0.blocks.2.dcn.value_proj.bias', 'levels.0.blocks.2.dcn.output_proj.weight', 'levels.0.blocks.2.norm2.0.weight', 'levels.0.blocks.2.norm2.0.bias', 'levels.0.blocks.2.mlp.fc1.weight', 'levels.0.blocks.2.mlp.fc1.bias', 'levels.0.blocks.2.mlp.fc2.weight', 'levels.0.blocks.3.norm1.0.weight', 'levels.0.blocks.3.norm1.0.bias', 'levels.0.blocks.3.dcn.offset_mask.weight', 'levels.0.blocks.3.dcn.offset_mask.bias', 'levels.0.blocks.3.dcn.value_proj.weight', 'levels.0.blocks.3.dcn.value_proj.bias', 'levels.0.blocks.3.dcn.output_proj.weight', 'levels.0.blocks.3.norm2.0.weight', 'levels.0.blocks.3.norm2.0.bias', 'levels.0.blocks.3.mlp.fc1.weight', 'levels.0.blocks.3.mlp.fc1.bias', 'levels.0.blocks.3.mlp.fc2.weight', 'levels.0.norm.0.weight', 'levels.0.norm.0.bias', 'levels.0.downsample.conv.weight', 'levels.0.downsample.norm.1.weight', 'levels.0.downsample.norm.1.bias', 'levels.1.blocks.0.norm1.0.weight', 'levels.1.blocks.0.norm1.0.bias', 'levels.1.blocks.0.dcn.offset_mask.weight', 'levels.1.blocks.0.dcn.offset_mask.bias', 'levels.1.blocks.0.dcn.value_proj.weight', 'levels.1.blocks.0.dcn.value_proj.bias', 'levels.1.blocks.0.dcn.output_proj.weight', 'levels.1.blocks.0.norm2.0.weight', 'levels.1.blocks.0.norm2.0.bias', 'levels.1.blocks.0.mlp.fc1.weight', 'levels.1.blocks.0.mlp.fc1.bias', 'levels.1.blocks.0.mlp.fc2.weight', 'levels.1.blocks.1.norm1.0.weight', 'levels.1.blocks.1.norm1.0.bias', 'levels.1.blocks.1.dcn.offset_mask.weight', 'levels.1.blocks.1.dcn.offset_mask.bias', 'levels.1.blocks.1.dcn.value_proj.weight', 'levels.1.blocks.1.dcn.value_proj.bias', 'levels.1.blocks.1.dcn.output_proj.weight', 'levels.1.blocks.1.norm2.0.weight', 'levels.1.blocks.1.norm2.0.bias', 'levels.1.blocks.1.mlp.fc1.weight', 'levels.1.blocks.1.mlp.fc1.bias', 'levels.1.blocks.1.mlp.fc2.weight', 'levels.1.blocks.2.norm1.0.weight', 'levels.1.blocks.2.norm1.0.bias', 'levels.1.blocks.2.dcn.offset_mask.weight', 'levels.1.blocks.2.dcn.offset_mask.bias', 'levels.1.blocks.2.dcn.value_proj.weight', 'levels.1.blocks.2.dcn.value_proj.bias', 'levels.1.blocks.2.dcn.output_proj.weight', 'levels.1.blocks.2.norm2.0.weight', 'levels.1.blocks.2.norm2.0.bias', 'levels.1.blocks.2.mlp.fc1.weight', 'levels.1.blocks.2.mlp.fc1.bias', 'levels.1.blocks.2.mlp.fc2.weight', 'levels.1.blocks.3.norm1.0.weight', 'levels.1.blocks.3.norm1.0.bias', 'levels.1.blocks.3.dcn.offset_mask.weight', 'levels.1.blocks.3.dcn.offset_mask.bias', 'levels.1.blocks.3.dcn.value_proj.weight', 'levels.1.blocks.3.dcn.value_proj.bias', 'levels.1.blocks.3.dcn.output_proj.weight', 'levels.1.blocks.3.norm2.0.weight', 'levels.1.blocks.3.norm2.0.bias', 'levels.1.blocks.3.mlp.fc1.weight', 'levels.1.blocks.3.mlp.fc1.bias', 'levels.1.blocks.3.mlp.fc2.weight', 'levels.1.norm.0.weight', 'levels.1.norm.0.bias', 'levels.1.downsample.conv.weight', 'levels.1.downsample.norm.1.weight', 'levels.1.downsample.norm.1.bias', 'levels.2.blocks.0.norm1.0.weight', 'levels.2.blocks.0.norm1.0.bias', 'levels.2.blocks.0.dcn.offset_mask.weight', 'levels.2.blocks.0.dcn.offset_mask.bias', 'levels.2.blocks.0.dcn.value_proj.weight', 'levels.2.blocks.0.dcn.value_proj.bias', 'levels.2.blocks.0.dcn.output_proj.weight', 'levels.2.blocks.0.norm2.0.weight', 'levels.2.blocks.0.norm2.0.bias', 'levels.2.blocks.0.mlp.fc1.weight', 'levels.2.blocks.0.mlp.fc1.bias', 'levels.2.blocks.0.mlp.fc2.weight', 'levels.2.blocks.1.norm1.0.weight', 'levels.2.blocks.1.norm1.0.bias', 'levels.2.blocks.1.dcn.offset_mask.weight', 'levels.2.blocks.1.dcn.offset_mask.bias', 'levels.2.blocks.1.dcn.value_proj.weight', 'levels.2.blocks.1.dcn.value_proj.bias', 'levels.2.blocks.1.dcn.output_proj.weight', 'levels.2.blocks.1.norm2.0.weight', 'levels.2.blocks.1.norm2.0.bias', 'levels.2.blocks.1.mlp.fc1.weight', 'levels.2.blocks.1.mlp.fc1.bias', 'levels.2.blocks.1.mlp.fc2.weight', 'levels.2.blocks.2.norm1.0.weight', 'levels.2.blocks.2.norm1.0.bias', 'levels.2.blocks.2.dcn.offset_mask.weight', 'levels.2.blocks.2.dcn.offset_mask.bias', 'levels.2.blocks.2.dcn.value_proj.weight', 'levels.2.blocks.2.dcn.value_proj.bias', 'levels.2.blocks.2.dcn.output_proj.weight', 'levels.2.blocks.2.norm2.0.weight', 'levels.2.blocks.2.norm2.0.bias', 'levels.2.blocks.2.mlp.fc1.weight', 'levels.2.blocks.2.mlp.fc1.bias', 'levels.2.blocks.2.mlp.fc2.weight', 'levels.2.blocks.3.norm1.0.weight', 'levels.2.blocks.3.norm1.0.bias', 'levels.2.blocks.3.dcn.offset_mask.weight', 'levels.2.blocks.3.dcn.offset_mask.bias', 'levels.2.blocks.3.dcn.value_proj.weight', 'levels.2.blocks.3.dcn.value_proj.bias', 'levels.2.blocks.3.dcn.output_proj.weight', 'levels.2.blocks.3.norm2.0.weight', 'levels.2.blocks.3.norm2.0.bias', 'levels.2.blocks.3.mlp.fc1.weight', 'levels.2.blocks.3.mlp.fc1.bias', 'levels.2.blocks.3.mlp.fc2.weight', 'levels.2.blocks.4.norm1.0.weight', 'levels.2.blocks.4.norm1.0.bias', 'levels.2.blocks.4.dcn.offset_mask.weight', 'levels.2.blocks.4.dcn.offset_mask.bias', 'levels.2.blocks.4.dcn.value_proj.weight', 'levels.2.blocks.4.dcn.value_proj.bias', 'levels.2.blocks.4.dcn.output_proj.weight', 'levels.2.blocks.4.norm2.0.weight', 'levels.2.blocks.4.norm2.0.bias', 'levels.2.blocks.4.mlp.fc1.weight', 'levels.2.blocks.4.mlp.fc1.bias', 'levels.2.blocks.4.mlp.fc2.weight', 'levels.2.blocks.5.norm1.0.weight', 'levels.2.blocks.5.norm1.0.bias', 'levels.2.blocks.5.dcn.offset_mask.weight', 'levels.2.blocks.5.dcn.offset_mask.bias', 'levels.2.blocks.5.dcn.value_proj.weight', 'levels.2.blocks.5.dcn.value_proj.bias', 'levels.2.blocks.5.dcn.output_proj.weight', 'levels.2.blocks.5.norm2.0.weight', 'levels.2.blocks.5.norm2.0.bias', 'levels.2.blocks.5.mlp.fc1.weight', 'levels.2.blocks.5.mlp.fc1.bias', 'levels.2.blocks.5.mlp.fc2.weight', 'levels.2.blocks.6.norm1.0.weight', 'levels.2.blocks.6.norm1.0.bias', 'levels.2.blocks.6.dcn.offset_mask.weight', 'levels.2.blocks.6.dcn.offset_mask.bias', 'levels.2.blocks.6.dcn.value_proj.weight', 'levels.2.blocks.6.dcn.value_proj.bias', 'levels.2.blocks.6.dcn.output_proj.weight', 'levels.2.blocks.6.norm2.0.weight', 'levels.2.blocks.6.norm2.0.bias', 'levels.2.blocks.6.mlp.fc1.weight', 'levels.2.blocks.6.mlp.fc1.bias', 'levels.2.blocks.6.mlp.fc2.weight', 'levels.2.blocks.7.norm1.0.weight', 'levels.2.blocks.7.norm1.0.bias', 'levels.2.blocks.7.dcn.offset_mask.weight', 'levels.2.blocks.7.dcn.offset_mask.bias', 'levels.2.blocks.7.dcn.value_proj.weight', 'levels.2.blocks.7.dcn.value_proj.bias', 'levels.2.blocks.7.dcn.output_proj.weight', 'levels.2.blocks.7.norm2.0.weight', 'levels.2.blocks.7.norm2.0.bias', 'levels.2.blocks.7.mlp.fc1.weight', 'levels.2.blocks.7.mlp.fc1.bias', 'levels.2.blocks.7.mlp.fc2.weight', 'levels.2.blocks.8.norm1.0.weight', 'levels.2.blocks.8.norm1.0.bias', 'levels.2.blocks.8.dcn.offset_mask.weight', 'levels.2.blocks.8.dcn.offset_mask.bias', 'levels.2.blocks.8.dcn.value_proj.weight', 'levels.2.blocks.8.dcn.value_proj.bias', 'levels.2.blocks.8.dcn.output_proj.weight', 'levels.2.blocks.8.norm2.0.weight', 'levels.2.blocks.8.norm2.0.bias', 'levels.2.blocks.8.mlp.fc1.weight', 'levels.2.blocks.8.mlp.fc1.bias', 'levels.2.blocks.8.mlp.fc2.weight', 'levels.2.blocks.9.norm1.0.weight', 'levels.2.blocks.9.norm1.0.bias', 'levels.2.blocks.9.dcn.offset_mask.weight', 'levels.2.blocks.9.dcn.offset_mask.bias', 'levels.2.blocks.9.dcn.value_proj.weight', 'levels.2.blocks.9.dcn.value_proj.bias', 'levels.2.blocks.9.dcn.output_proj.weight', 'levels.2.blocks.9.norm2.0.weight', 'levels.2.blocks.9.norm2.0.bias', 'levels.2.blocks.9.mlp.fc1.weight', 'levels.2.blocks.9.mlp.fc1.bias', 'levels.2.blocks.9.mlp.fc2.weight', 'levels.2.blocks.10.norm1.0.weight', 'levels.2.blocks.10.norm1.0.bias', 'levels.2.blocks.10.dcn.offset_mask.weight', 'levels.2.blocks.10.dcn.offset_mask.bias', 'levels.2.blocks.10.dcn.value_proj.weight', 'levels.2.blocks.10.dcn.value_proj.bias', 'levels.2.blocks.10.dcn.output_proj.weight', 'levels.2.blocks.10.norm2.0.weight', 'levels.2.blocks.10.norm2.0.bias', 'levels.2.blocks.10.mlp.fc1.weight', 'levels.2.blocks.10.mlp.fc1.bias', 'levels.2.blocks.10.mlp.fc2.weight', 'levels.2.blocks.11.norm1.0.weight', 'levels.2.blocks.11.norm1.0.bias', 'levels.2.blocks.11.dcn.offset_mask.weight', 'levels.2.blocks.11.dcn.offset_mask.bias', 'levels.2.blocks.11.dcn.value_proj.weight', 'levels.2.blocks.11.dcn.value_proj.bias', 'levels.2.blocks.11.dcn.output_proj.weight', 'levels.2.blocks.11.norm2.0.weight', 'levels.2.blocks.11.norm2.0.bias', 'levels.2.blocks.11.mlp.fc1.weight', 'levels.2.blocks.11.mlp.fc1.bias', 'levels.2.blocks.11.mlp.fc2.weight', 'levels.2.blocks.12.norm1.0.weight', 'levels.2.blocks.12.norm1.0.bias', 'levels.2.blocks.12.dcn.offset_mask.weight', 'levels.2.blocks.12.dcn.offset_mask.bias', 'levels.2.blocks.12.dcn.value_proj.weight', 'levels.2.blocks.12.dcn.value_proj.bias', 'levels.2.blocks.12.dcn.output_proj.weight', 'levels.2.blocks.12.norm2.0.weight', 'levels.2.blocks.12.norm2.0.bias', 'levels.2.blocks.12.mlp.fc1.weight', 'levels.2.blocks.12.mlp.fc1.bias', 'levels.2.blocks.12.mlp.fc2.weight', 'levels.2.blocks.13.norm1.0.weight', 'levels.2.blocks.13.norm1.0.bias', 'levels.2.blocks.13.dcn.offset_mask.weight', 'levels.2.blocks.13.dcn.offset_mask.bias', 'levels.2.blocks.13.dcn.value_proj.weight', 'levels.2.blocks.13.dcn.value_proj.bias', 'levels.2.blocks.13.dcn.output_proj.weight', 'levels.2.blocks.13.norm2.0.weight', 'levels.2.blocks.13.norm2.0.bias', 'levels.2.blocks.13.mlp.fc1.weight', 'levels.2.blocks.13.mlp.fc1.bias', 'levels.2.blocks.13.mlp.fc2.weight', 'levels.2.blocks.14.norm1.0.weight', 'levels.2.blocks.14.norm1.0.bias', 'levels.2.blocks.14.dcn.offset_mask.weight', 'levels.2.blocks.14.dcn.offset_mask.bias', 'levels.2.blocks.14.dcn.value_proj.weight', 'levels.2.blocks.14.dcn.value_proj.bias', 'levels.2.blocks.14.dcn.output_proj.weight', 'levels.2.blocks.14.norm2.0.weight', 'levels.2.blocks.14.norm2.0.bias', 'levels.2.blocks.14.mlp.fc1.weight', 'levels.2.blocks.14.mlp.fc1.bias', 'levels.2.blocks.14.mlp.fc2.weight', 'levels.2.blocks.15.norm1.0.weight', 'levels.2.blocks.15.norm1.0.bias', 'levels.2.blocks.15.dcn.offset_mask.weight', 'levels.2.blocks.15.dcn.offset_mask.bias', 'levels.2.blocks.15.dcn.value_proj.weight', 'levels.2.blocks.15.dcn.value_proj.bias', 'levels.2.blocks.15.dcn.output_proj.weight', 'levels.2.blocks.15.norm2.0.weight', 'levels.2.blocks.15.norm2.0.bias', 'levels.2.blocks.15.mlp.fc1.weight', 'levels.2.blocks.15.mlp.fc1.bias', 'levels.2.blocks.15.mlp.fc2.weight', 'levels.2.blocks.16.norm1.0.weight', 'levels.2.blocks.16.norm1.0.bias', 'levels.2.blocks.16.dcn.offset_mask.weight', 'levels.2.blocks.16.dcn.offset_mask.bias', 'levels.2.blocks.16.dcn.value_proj.weight', 'levels.2.blocks.16.dcn.value_proj.bias', 'levels.2.blocks.16.dcn.output_proj.weight', 'levels.2.blocks.16.norm2.0.weight', 'levels.2.blocks.16.norm2.0.bias', 'levels.2.blocks.16.mlp.fc1.weight', 'levels.2.blocks.16.mlp.fc1.bias', 'levels.2.blocks.16.mlp.fc2.weight', 'levels.2.blocks.17.norm1.0.weight', 'levels.2.blocks.17.norm1.0.bias', 'levels.2.blocks.17.dcn.offset_mask.weight', 'levels.2.blocks.17.dcn.offset_mask.bias', 'levels.2.blocks.17.dcn.value_proj.weight', 'levels.2.blocks.17.dcn.value_proj.bias', 'levels.2.blocks.17.dcn.output_proj.weight', 'levels.2.blocks.17.norm2.0.weight', 'levels.2.blocks.17.norm2.0.bias', 'levels.2.blocks.17.mlp.fc1.weight', 'levels.2.blocks.17.mlp.fc1.bias', 'levels.2.blocks.17.mlp.fc2.weight', 'levels.2.norm.0.weight', 'levels.2.norm.0.bias', 'levels.2.downsample.conv.weight', 'levels.2.downsample.norm.1.weight', 'levels.2.downsample.norm.1.bias', 'levels.3.blocks.0.norm1.0.weight', 'levels.3.blocks.0.norm1.0.bias', 'levels.3.blocks.0.dcn.offset_mask.weight', 'levels.3.blocks.0.dcn.offset_mask.bias', 'levels.3.blocks.0.dcn.value_proj.weight', 'levels.3.blocks.0.dcn.value_proj.bias', 'levels.3.blocks.0.dcn.output_proj.weight', 'levels.3.blocks.0.norm2.0.weight', 'levels.3.blocks.0.norm2.0.bias', 'levels.3.blocks.0.mlp.fc1.weight', 'levels.3.blocks.0.mlp.fc1.bias', 'levels.3.blocks.0.mlp.fc2.weight', 'levels.3.blocks.1.norm1.0.weight', 'levels.3.blocks.1.norm1.0.bias', 'levels.3.blocks.1.dcn.offset_mask.weight', 'levels.3.blocks.1.dcn.offset_mask.bias', 'levels.3.blocks.1.dcn.value_proj.weight', 'levels.3.blocks.1.dcn.value_proj.bias', 'levels.3.blocks.1.dcn.output_proj.weight', 'levels.3.blocks.1.norm2.0.weight', 'levels.3.blocks.1.norm2.0.bias', 'levels.3.blocks.1.mlp.fc1.weight', 'levels.3.blocks.1.mlp.fc1.bias', 'levels.3.blocks.1.mlp.fc2.weight', 'levels.3.blocks.2.norm1.0.weight', 'levels.3.blocks.2.norm1.0.bias', 'levels.3.blocks.2.dcn.offset_mask.weight', 'levels.3.blocks.2.dcn.offset_mask.bias', 'levels.3.blocks.2.dcn.value_proj.weight', 'levels.3.blocks.2.dcn.value_proj.bias', 'levels.3.blocks.2.dcn.output_proj.weight', 'levels.3.blocks.2.norm2.0.weight', 'levels.3.blocks.2.norm2.0.bias', 'levels.3.blocks.2.mlp.fc1.weight', 'levels.3.blocks.2.mlp.fc1.bias', 'levels.3.blocks.2.mlp.fc2.weight', 'levels.3.blocks.3.norm1.0.weight', 'levels.3.blocks.3.norm1.0.bias', 'levels.3.blocks.3.dcn.offset_mask.weight', 'levels.3.blocks.3.dcn.offset_mask.bias', 'levels.3.blocks.3.dcn.value_proj.weight', 'levels.3.blocks.3.dcn.value_proj.bias', 'levels.3.blocks.3.dcn.output_proj.weight', 'levels.3.blocks.3.norm2.0.weight', 'levels.3.blocks.3.norm2.0.bias', 'levels.3.blocks.3.mlp.fc1.weight', 'levels.3.blocks.3.mlp.fc1.bias', 'levels.3.blocks.3.mlp.fc2.weight', 'levels.3.norm.0.weight', 'levels.3.norm.0.bias', 'conv_head.0.weight', 'conv_head.1.0.weight', 'conv_head.1.0.bias', 'conv_head.1.0.running_mean', 'conv_head.1.0.running_var', 'conv_head.1.0.num_batches_tracked', 'head.weight', 'head.bias']

可以看到,我的模型的名字每一层都比预训练的权重多了一个’model.',这就导致了无法加载权重。
于是就把预训练的权重的键名加上‘model.’即可。

        model_weight= {'model.' + key: value for key, value in model_weight.items()}

然后重新调试,可以看到输出:

Missing keys: []
Unexpected keys: ['model.head.weight', 'model.head.bias']

可以看到Missing keys为空,所以需要的权重全部加载了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/888408.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python 笔记之线程同步和死锁

同步: 共享数据: 如果多个线程共同对某个数据修改,则可能出现不可预测的结果,为了保证数据的正确性,需要对多个数据进行同步 同步:一个一个的完成,一个做完另一个才能进来 效率会降低 使用Thre…

Python爬虫——猫眼电影

用python中requests库爬取猫眼电影信息并保存到csv文件中 猫眼专业版 爬取界面 效果预览 代码 import requests import jsonurl1https://piaofang.maoyan.com/dashboard-ajax?orderType0&uuid1938bd58ddac8-02c2bbe3b009ed-4c657b58-144000-1938bd58ddac8&timeStamp…

python 三钱筮法项目开发

三钱筮法项目技术说明 1. 技术栈 GUI框架: CustomTkinter 现代化的Tkinter扩展提供美观的界面组件支持主题定制 数据存储: JSON 卦象数据: gua_info.json记忆数据: memory.json易经解释: detail.json 图像处理: PIL (Python Imaging Library) 处理图标和图片资源 2. 主要功…

yagmail邮件发送库:如何用Python实现自动化邮件营销?

🎥 作者简介: CSDN\阿里云\腾讯云\华为云开发社区优质创作者,专注分享大数据、Python、数据库、人工智能等领域的优质内容 🌸个人主页: 长风清留杨的博客 🍃形式准则: 无论成就大小,…

NLP 的研究任务

自然语言处理(Natural Language Processing, NLP) NLP 的研究任务 自然语言处理(Natural Language Processing, NLP)1. **机器翻译**2. **情感分析**3. **智能问答**4. **文摘生成**5. **文本分类**6. **舆论分析**7. **知识图谱*…

无人机的计算机仿真模拟控制

🏡作者主页:点击! 🤖编程探索专栏:点击! ⏰️创作时间:2024年12月3日10点24分 神秘男子影, 秘而不宣藏。 泣意深不见, 男子自持重, 子夜独自沉。 论文链接 点击开启你的论文编程之旅h…

vue+mars3d给影像底图叠加炫酷效果

话不多说,直接上效果图: 在这里墙体其实是有一个不太明显的流动效果 实现方式:这里我使用了PolylineEntityWallPrimitive,开始我用的是polygonEntity但是发现实现效果并不好,所有直接改用了线 map.vue文件&#xff1…

浅谈volatile

volatile有三个特性: (1)可见性 (2)不保证原子性 (3)禁止指令重排 下面我们一一介绍 (一)可见性 volatile的可见性是说共享变量只要修改,就可以被其他线…

Redis自学之路—高级特性(实现消息队列)(七)

目录 简介 Redis的Key和Value的数据结构组织 全局哈希表 渐进式rehash 发布和订阅 操作命令 publish 发布消息 subscribe 订阅消息 psubscribe订阅频道 unsubscribe 取消订阅一个或多个频道 punsubscribe 取消订阅一个或多个模式 查询订阅情况-查看活跃的频道 查询…

Java-09 深入浅出 MyBatis - 注解开发 注解映射 基本介绍 与 一对一模型

点一下关注吧!!!非常感谢!!持续更新!!! 大数据篇正在更新!https://blog.csdn.net/w776341482/category_12713819.html 目前已经更新到了: MyBatis&#xff…

【k8s】kubelet 的相关证书

在 Kubernetes 集群中,kubelet 使用的证书通常存放在节点上的特定目录。这些证书用于 kubelet 与 API 服务器之间的安全通信。具体的位置可能会根据你的 Kubernetes 安装方式和配置有所不同,下图是我自己环境【通过 kubeadm 安装的集群】中的kubelet的证…

ES语法(一)概括

一、语法 1、请求方式 Elasticsearch&#xff08;ES&#xff09;使用基于 JSON 的查询 DSL&#xff08;领域特定语言&#xff09;来与数据交互。 一个 ElasticSearch 请求和任何 HTTP 请求一样由若干相同的部件组成&#xff1a; curl -X<VERB> <PROTOCOL>://&l…

Redis开发实践

在现代开发中&#xff0c;Redis 已经成为一种重要的高性能内存数据库。无论是作为缓存、消息队列还是排行榜的实现工具&#xff0c;它都表现出了极高的性能和灵活性。本文将带你了解 Redis 的基本概念&#xff0c;并通过 Python 示例代码实现 Redis 的核心功能。 文章目录 1. R…

【el-table】表格后端排序

在需要排序的列添加属性 sortable&#xff0c;后端排序&#xff0c;需将sortable设置为custom 如果需要自定义轮转添加 sort-orders 属性&#xff0c;数组中的元素需为以下三者之一&#xff1a;ascending 表示升序&#xff0c;descending 表示降序&#xff0c;null 表示还原为原…

Linux迁移gitlab容器

Linux迁移gitlab容器并配置 迁移gitlab容器本文分两部分&#xff0c;第一步在新服务器上安装相同版本的gitlab容器&#xff0c;可以在确定gitlab版本之后直接在docker上拉取&#xff0c;我这里直接从原服务器上将镜像打包加载到新服务器上。第二步从原服务器上操作备份文件&am…

3.建立本地仓库及常用命令

1.建立本地仓库 要使用Git对我们的代码进行版本控制&#xff0c;首先需要获得本地仓库 1&#xff09;在电脑的任意位置创建一个空目录&#xff0c;作为我们的本地Git仓库 2&#xff09;进入这个目录&#xff0c;右键点击Git Bash 窗口 3&#xff09;执行命令git init 4) 如果创…

Narya.ai正在寻找iOS工程师!#Mixlab内推

如果你对AI技术和iOS开发充满热情&#xff0c;这里有一个绝佳的机会加入一家专注于AI应用创新的初创公司。Narya.ai正在招聘iOS工程师&#xff0c;帮助他们开发下一代效率工具&#xff0c;旨在提升用户的日常生活效率与幸福感。 关于Narya.ai&#xff1a; 专注于AI应用层创新&a…

AI开发:生成式对抗网络入门 模型训练和图像生成 -Python 机器学习

阶段1&#xff1a;GAN是个啥&#xff1f; 生成式对抗网络&#xff08;Generative Adversarial Networks, GAN&#xff09;&#xff0c;名字听着就有点“对抗”的意思&#xff0c;没错&#xff01;它其实是两个神经网络互相斗智斗勇的游戏&#xff1a; 生成器&#xff08;Gene…

网络安全攻击和防范措施

常见的有四种网络安全攻击方式. 第一种是XSS跨站脚本攻击,往网页中插入恶意脚本代码以攻击用户. 防范措施有三种. 第一种是输入过滤,对用户的所有输入数据进行检测,过滤掉可能导致脚本的字符. 第二种是输出编码,使用工具对用户输入进行编码,使其中可能含有的HTML脚本变成普通…

Redis服务配置文件 redis.conf 更新修改配置参数说明

场景&#xff1a; 在安装redis服务中&#xff0c;默认的配置项通常不能实际使用&#xff0c;需要修改一些配置参数 修改配置参数 1、拿到 redis.cnf 文件&#xff0c;此文件通常在 redis 项目源码的第一级目录下 2、修改配置内容&#xff0c;主要修改项如下 protect…