Python和R基因组及蛋白质组学和代谢组学

🌵Python片段

1. 数据处理与清理

基因组病理学的数据通常非常庞大,且可能包括 DNA 或 RNA 测序结果、基因表达数据等。Python 提供了高效的数据处理工具。

  • 工具和库
    • Pandas: 用于加载、清理和操作数据。
    • Numpy: 用于高效的数值计算。
    • Dask: 用于大规模数据的分布式计算。

示例: 读取和处理 RNA-seq 数据

import pandas as pd# 读取基因表达矩阵
data = pd.read_csv("gene_expression.csv")
# 筛选表达水平高的基因
filtered_data = data[data['expression_level'] > 10]

2. 基因组序列分析

基因组病理学的核心之一是序列分析,包括基因序列比对、变异检测、以及功能注释。

  • 工具和库
    • Biopython: 处理生物序列、执行文件解析(如 FASTA、GenBank)。
    • Pysam: 操作 BAM/CRAM 文件。
    • Scikit-Bio: 执行序列比对和微生物组分析。
    • HTSeq: 用于 RNA-seq 数据的计数和注释。

示例: FASTA 文件的读取

from Bio import SeqIO# 读取 FASTA 文件
for seq_record in SeqIO.parse("example.fasta", "fasta"):print(f"ID: {seq_record.id}")print(f"Sequence: {seq_record.seq}")

3. 变异分析与注释

变异分析(如 SNP、INDEL)在基因组病理学中至关重要,可以帮助发现与疾病相关的基因突变。

  • 工具和库
    • PyVCF: 用于解析和操作 VCF 文件。
    • CAVA: 注释变异影响。
    • ANNOVAR(需结合 Python 脚本使用): 功能注释工具。

示例: 操作 VCF 文件

import vcf# 读取 VCF 文件
vcf_reader = vcf.Reader(open("variants.vcf", "r"))
for record in vcf_reader:print(f"Chromosome: {record.CHROM}, Position: {record.POS}, Ref: {record.REF}, Alt: {record.ALT}")

4. 数据可视化

基因组数据需要清晰的可视化来发现模式或验证结果。

  • 工具和库
    • Matplotlib/Seaborn: 通用的可视化工具。
    • Plotly: 交互式数据可视化。
    • PyGenomeViz: 用于基因组结构和序列比对可视化。

示例: 可视化基因表达分布

import matplotlib.pyplot as plt
import seaborn as sns# 数据准备
gene_expression = filtered_data['expression_level']# 可视化
sns.histplot(gene_expression, bins=50, kde=True)
plt.title("Gene Expression Distribution")
plt.show()

5. 机器学习和预测模型

通过机器学习,可以构建基因组病理学模型,用于疾病诊断或生物标志物发现。

  • 工具和库
    • Scikit-Learn: 构建和训练传统机器学习模型。
    • TensorFlow/PyTorch: 构建深度学习模型。
    • XGBoost: 用于基因组大数据的高效分类和回归分析。

示例: 使用随机森林分类预测基因组变异对疾病的影响

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split# 数据分割
X = data.drop(columns=['disease'])
y = data['disease']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)# 随机森林模型
clf = RandomForestClassifier()
clf.fit(X_train, y_train)# 测试模型
accuracy = clf.score(X_test, y_test)
print(f"Model Accuracy: {accuracy}")

6. 工作流程自动化

  • Snakemake: 自动化基因组学分析工作流程。
  • Nextflow: 分布式数据处理。

🌵R片段

使用 R 进行基因组病理学是一种强大的方法,可用于处理、分析和可视化基因组数据,以识别与疾病相关的分子特征或病理学模式。以下是如何在 R 中执行此类分析的关键步骤和资源:


1. 数据准备与加载

  • 原始数据格式

    • 微阵列数据(如 .CEL 文件)。
    • RNA-seq 数据(如 counts 矩阵或 .FASTQ 文件)。
    • 基因组变异数据(如 VCF 文件)。
  • R 包和工具

    • readrdata.table:加载大数据集。
    • Bioconductor:专为生物信息学设计,提供多种工具。
    install.packages("BiocManager")
    BiocManager::install("DESeq2")  # RNA-seq 分析
    BiocManager::install("edgeR")  # 差异表达分析
    

2. 数据预处理

  • 质量控制(QC)

    • 使用 FastQCMultiQC 检查原始数据。
    • R 包如 ShortReadBiostrings 处理序列数据。
  • 标准化

    • RNA-seq:TPMFPKMRPKM
    • 使用 DESeq2edgeR 内置方法进行标准化。
    library(DESeq2)
    dds <- DESeqDataSetFromMatrix(countData = counts, colData = colData, design = ~ condition)
    dds <- DESeq(dds)
    
  • 基因注释

    • 使用 org.Hs.eg.dbbiomaRt
    library(org.Hs.eg.db)
    genes <- mapIds(org.Hs.eg.db, keys = rownames(counts), column = "SYMBOL", keytype = "ENSEMBL")
    

3. 差异表达分析

  • 寻找差异表达基因(DEGs)

    • 常用工具:DESeq2, edgeR, limma

    • 示例:

      res <- results(dds)
      resOrdered <- res[order(res$padj),]
      topGenes <- head(resOrdered, n = 10)
      
  • 可视化

    • 火山图

      library(ggplot2)
      ggplot(res, aes(x = log2FoldChange, y = -log10(padj))) +geom_point(alpha = 0.5) +theme_minimal()
      
    • 热图:使用 pheatmap

      library(pheatmap)
      pheatmap(assay(dds)[rownames(topGenes),])
      

4. 功能富集分析

  • 工具

    • clusterProfiler:基因本体(GO)、通路(KEGG)。
    • fgsea:基因集富集分析。
    library(clusterProfiler)
    enrichGO <- enrichGO(gene = geneList, OrgDb = org.Hs.eg.db, keyType = "SYMBOL", ont = "BP")
    dotplot(enrichGO)
    

5. 变异分析

  • 处理 VCF 文件

    • 使用 VariantAnnotation
    library(VariantAnnotation)
    vcf <- readVcf("variants.vcf", "hg38")
    
  • 可视化变异

    • maftools:分析突变负荷、生成瀑布图。
    library(maftools)
    maf <- read.maf(maf = "example.maf")
    plotmafSummary(maf)
    

6. 整合与机器学习

  • 整合多组学数据

    • mixOmicsMOFA2
  • 机器学习

    • carettidymodels
    • 生存分析:如 LASSO 选择特征。
    library(survival)
    coxph(Surv(time, status) ~ gene, data = dataset)
    

7. 报告与可视化

  • 交互式展示:
    • 使用 shiny 开发交互式报告。
  • 复杂图形:
    • ggplot2, plotly, circlize(弦图)。

👉更新:亚图跨际

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/887287.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Varjo:垂直起降机混合现实培训解决方案

混合电动垂直起降机&#xff08;VTOL&#xff09;作为一种新型的航空运输机具有超越传统汽车的安全性、与飞机相当的速度以及无与伦比的灵活起降功能。电动垂直起降机能够在建筑顶部、直升机场或是没有跑道的地区起飞或降落&#xff0c;且排放要远远低于由航空汽油驱动的传统飞…

Android 实现悬浮球的功能

Android 实现悬浮球的功能 在 Android 中&#xff0c;实现悬浮球可以通过以下方式实现&#xff0c;常见的方法是使用 WindowManager 创建一个悬浮窗口。以下是具体的实现步骤&#xff1a; 1. 配置权限 在 AndroidManifest.xml 中添加悬浮窗权限&#xff1a; <uses-permis…

[Python3学习笔记-基础语法] Python3 基础语法

本篇文章详细介绍Python3的基础语法&#xff0c;主要包括编码、标识符、Python保留字、注释、行缩进、多行语句、Number类型、字符串、空行、print打印等。 这些是Python最基础的东西&#xff0c;掌握好了才能更好的学习后续的内容。 有兴趣共同结伴学习Python的朋友&#xff0…

RabbitMQ3:Java客户端快速入门

欢迎来到“雪碧聊技术”CSDN博客&#xff01; 在这里&#xff0c;您将踏入一个专注于Java开发技术的知识殿堂。无论您是Java编程的初学者&#xff0c;还是具有一定经验的开发者&#xff0c;相信我的博客都能为您提供宝贵的学习资源和实用技巧。作为您的技术向导&#xff0c;我将…

Gradio学习笔记记录

安装指令&#xff1a;pip install gradio方法介绍 Interface》用于构建一些简单的页面&#xff0c;可以直接用这个指令搞定 形式》接收三个参数分别为处理函数、输入、输出三部分&#xff0c;呈现一般左/上为输入&#xff0c;右或下为输出 fn&#xff1a;将用户界面 &#xff0…

✅ Qt流式布局

Qt流式布局 前段时间&#xff0c;曾经对某个软件的一个“流式布局”有点感兴趣&#xff0c;什么叫“流式布局”呢&#xff1f;请看下图: 简而言之&#xff0c;流式布局就是布局应能够根据界面尺寸的变化自动调整其内部控件的位置。然而&#xff0c;Qt 提供的标准布局&#xff…

为什么我们需要DDD?DDD领域驱动设计入门及案例讲解(图文并茂+浅显易懂)

DDD领域驱动设计入门目录 Q1&#xff1a;为什么需要DDD领域驱动设计模型&#xff1f;Q2&#xff1a;DDD领域驱动设计模型怎么用&#xff1f;设计领域模型的一般步骤一、战略建模&#xff08;从高处俯瞰业务 - 微服务的宏观规划&#xff09;1. 领域划分2. 界限上下文定义3. 统一…

vue--制作购物车

&#x1f914;如何制作出下列效果呢&#xff1f;&#x1f447; &#x1f636;‍&#x1f32b;️首先: 设置css样式&#xff1a; <style>body {font-family: Arial, sans-serif;}.cart-item {width: 50%;margin-bottom: 15px;padding: 10px;border: 2px solid gray;borde…

MFC 对话框中显示CScrollView实例

有时候我们需要在对话框中显示CScrollView效果的控件&#xff0c;类似于以下效果&#xff1a; 使用实例可参考&#xff1a;MFC对话框显示CScrollView例子_哔哩哔哩_bilibili 创建CScrollView中显示的子对话框与子类&#xff1a; 两个对话框对应的类&#xff1a; CScrollView继…

高危,Laravel参数注入漏洞安全风险通告

今日&#xff0c;亚信安全CERT监控到安全社区研究人员发布安全通告&#xff0c;披露了Laravel 参数注入漏洞(CVE-2024-52301)。在受影响的版本中&#xff0c;Application.php 文件的 detectEnvironment 函数直接使用了 $_SERVER[argv]&#xff0c;但没有检查运行环境是否为 CLI…

【unity小技巧】unity常用的编辑器扩展

文章目录 1. **自定义 Inspector&#xff08;Inspector 面板&#xff09;**示例&#xff1a; 2. **Editor Window&#xff08;自定义编辑器窗口&#xff09;**示例&#xff1a; 3. **PropertyDrawer&#xff08;自定义属性绘制&#xff09;**示例&#xff1a; 4. **菜单项&…

数字化工厂 MES试点方案全解析(二)

生产过程监控与数据采集 在生产线上部署各类传感器、数据采集终端等设备&#xff0c;与 MES 系统相连&#xff0c;实时采集生产数据&#xff0c;如设备运行参数&#xff08;温度、压力、转速等&#xff09;、产品加工数据&#xff08;尺寸、重量、加工时间等&#xff09;、物料…

5G CPE与4G CPE的主要区别有哪些

什么是CPE&#xff1f; CPE是Customer Premise Equipment&#xff08;客户前置设备&#xff09;的缩写&#xff0c;也可称为Customer-side Equipment、End-user Equipment或On-premises Equipment。CPE通常指的是位于用户或客户处的网络设备或终端设备&#xff0c;用于连接用户…

【海思Hi3519DV500】双目网络相机套板硬件规划方案

Hi3519DV500双目网络相机套板是针对该芯片设计的一款 IP 编码板 PCBA&#xff0c;硬件接口支持双目sensor 接入&#xff0c;SDIO3.0 接口、USB2.0、USB3.0、UART 接口以及丰富的 IO 扩展应用&#xff0c;可根据各种使用场景设计相应扩展板&#xff0c;丰富外围接口&#xff0c;…

已阻止加载“http://localhost:8086/xxx.js”的模块,它使用了不允许的 MIME 类型 (“text/plain”)。

记录今天解决的一个小bug 在终端启动8080端口号监听后&#xff0c;打开网址http://localhost:8080&#xff0c;发现不能正确加载页面&#xff0c;打开检查-控制台&#xff0c;出现如下警告&#xff1a;已阻止加载“http://localhost:8086/xxx.js”的模块&#xff0c;它使用了不…

unity3d——基础篇小项目(开始界面)

示例代码&#xff1a; using System.Collections; using System.Collections.Generic; using UnityEngine;public class BeginPanel : BasePanel<BeginPanel> {public UIButton btnBegin;public UIButton btnRank;public UIButton btnSetting;public UIButton btnQuit; …

时序预测 | Matlab实现PSO-Elman粒子群优化递归神经网络时间序列预测

时序预测 | Matlab实现PSO-Elman粒子群优化递归神经网络时间序列预测 目录 时序预测 | Matlab实现PSO-Elman粒子群优化递归神经网络时间序列预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现PSO-Elman粒子群优化递归神经网络时间序列预测&#xff08;完整源…

Let‘s Encrypt SSL证书:acmessl.cn申请免费3个月证书

目录 一、CA机构 二、Lets Encrypt特点 三、申请SSL 一、CA机构 ‌Lets Encrypt‌是一个由非营利组织Internet Security Research Group (ISRG)运营的证书颁发机构&#xff08;CA&#xff09;&#xff0c;旨在通过自动化和开放的方式为全球网站提供免费、可靠的SSL/TLS证书。…

丹摩征文活动|基于丹摩算力Llama3.1实现私有化部署的Chatbot

一、简介 Llama 3.1 模型介绍 Llama 3.1 是一种大型的、开源的语言生成模型&#xff0c;类似于OpenAI的GPT-3&#xff0c;但它是由Meta&#xff08;前Facebook&#xff09;推出的。Llama 3.1具备强大的自然语言处理能力&#xff0c;可以执行各种语言任务&#xff0c;如对话生…

ssm168基于jsp的实验室考勤管理系统网页的设计与实现+jsp(论文+源码)_kaic

毕 业 设 计&#xff08;论 文&#xff09; 题目&#xff1a;实验室考勤管理系统设计与实现 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本实验室考勤管…