题目出处
44-通配符匹配-题目出处
题目描述
个人解法
思路:
todo
代码示例:(Java)
todo
复杂度分析
todo
官方解法
44-通配符匹配-官方解法
前言
本题与10. 正则表达式匹配非常类似,但相比较而言,本题稍微容易一些。因为在本题中,模式 p 中的任意一个字符都是独立的,即不会和前后的字符互相关联,形成一个新的匹配模式。因此,本题的状态转移方程需要考虑的情况会少一些。
方法1:动态规划
思路:
代码示例:(Java)
public class Solution1 {public boolean isMatch(String s, String p) {int m = s.length();int n = p.length();boolean[][] dp = new boolean[m + 1][n + 1];dp[0][0] = true;for (int i = 1; i <= n; ++i) {if (p.charAt(i - 1) == '*') {dp[0][i] = true;} else {break;}}for (int i = 1; i <= m; ++i) {for (int j = 1; j <= n; ++j) {if (p.charAt(j - 1) == '*') {dp[i][j] = dp[i][j - 1] || dp[i - 1][j];} else if (p.charAt(j - 1) == '?' || s.charAt(i - 1) == p.charAt(j - 1)) {dp[i][j] = dp[i - 1][j - 1];}}}return dp[m][n];}}
复杂度分析
- 时间复杂度:O(mn),其中 m 和 n 分别是字符串 s 和模式 p 的长度。
- 空间复杂度:O(mn),即为存储所有 (m+1)(n+1) 个状态需要的空间。此外,在状态转移方程中,由于 dp[i][j] 只会从 dp[i][…] 以及 dp[i−1][…] 转移而来,因此我们可以使用滚动数组对空间进行优化,即用两个长度为 n+1 的一维数组代替整个二维数组进行状态转移,空间复杂度为 O(n)。
方法2:贪心算法
思路:
// 我们用 sIndex 和 pIndex 表示当前遍历到 s 和 p 的位置
// 此时我们正在 s 中寻找某个 u_i
// 其在 s 和 p 中的起始位置为 sRecord 和 pRecord// sIndex 和 sRecord 的初始值为 0
// 即我们从字符串 s 的首位开始匹配
sIndex = sRecord = 0// pIndex 和 pRecord 的初始值为 1
// 这是因为模式 p 的首位是星号,那么 u_1 的起始位置为 1
pIndex = pRecord = 1while sIndex < s.length and pIndex < p.length doif p[pIndex] == '*' then// 如果遇到星号,说明找到了 u_i,开始寻找 u_i+1pIndex += 1// 记录下起始位置sRecord = sIndexpRecord = pIndexelse if match(s[sIndex], p[pIndex]) then// 如果两个字符可以匹配,就继续寻找 u_i 的下一个字符sIndex += 1pIndex += 1else if sRecord + 1 < s.length then// 如果两个字符不匹配,那么需要重新寻找 u_i// 枚举下一个 s 中的起始位置sRecord += 1sIndex = sRecordpIndex = pRecordelse// 如果不匹配并且下一个起始位置不存在,那么匹配失败return Falseend if
end while// 由于 p 的最后一个字符是星号,那么 s 未匹配完,那么没有关系
// 但如果 p 没有匹配完,那么 p 剩余的字符必须都是星号
return all(p[pIndex] ~ p[p.length - 1] == '*')
代码示例:(Java)
public class Solution2 {public boolean isMatch(String s, String p) {int sRight = s.length(), pRight = p.length();while (sRight > 0 && pRight > 0 && p.charAt(pRight - 1) != '*') {if (charMatch(s.charAt(sRight - 1), p.charAt(pRight - 1))) {--sRight;--pRight;} else {return false;}}if (pRight == 0) {return sRight == 0;}int sIndex = 0, pIndex = 0;int sRecord = -1, pRecord = -1;while (sIndex < sRight && pIndex < pRight) {if (p.charAt(pIndex) == '*') {++pIndex;sRecord = sIndex;pRecord = pIndex;} else if (charMatch(s.charAt(sIndex), p.charAt(pIndex))) {++sIndex;++pIndex;} else if (sRecord != -1 && sRecord + 1 < sRight) {++sRecord;sIndex = sRecord;pIndex = pRecord;} else {return false;}}return allStars(p, pIndex, pRight);}public boolean allStars(String str, int left, int right) {for (int i = left; i < right; ++i) {if (str.charAt(i) != '*') {return false;}}return true;}public boolean charMatch(char u, char v) {return u == v || v == '?';}}
复杂度分析
On the Average-case Complexity of Pattern Matching with Wildcards 【来自于:Cornell University(康奈尔大学)】
结语
AC自动机
Set Matching and Aho-Corasick Algorithm【来自于:Carnegie Mellon University(卡内基梅隆大学 ),Java之父詹姆斯·高斯林 (James Gosling)在该校获得计算机科学博士学位】
考察知识点
1.通配符匹配
收获
1.通配符
2.伪代码
Gitee源码位置
44-通配符匹配-源码