pytorh学习笔记——cifar10(三)模仿VGGNet创建卷积网络

        VGG16是由牛津大学视觉几何组(Visual Geometry Group)提出的一种深度卷积神经网络模型。

        VGGNet 探索了卷积神经网络的深度与其性能之间的关系,成功地构筑了 16~19 层深的卷积神经网络,同时拓展性又很强,迁移到其它图片数据上的泛化性也非常好。到目前为止,VGG 仍然被用来提取图像特征。

        对VGGNet的介绍,这篇文章很优秀:大话CNN经典模型:VGGNet - OSCHINA - 中文开源技术交流社区

        部分摘抄:

        VGGNet的网络结构:
        下图是来自论文《Very Deep Convolutional Networks for Large-Scale Image Recognition》(基于甚深层卷积网络的大规模图像识别)的 VGG 网络结构,正是在这篇论文中提出了 VGG,如下图:

        在这篇论文中分别使用了 A、A-LRN、B、C、D、E 这 6 种网络结构进行测试,这 6 种网络结构相似,都是由 5 层卷积层、3 层全连接层组成,其中区别在于每个卷积层的子层数量不同,从 A 至 E 依次增加(子层数量从 1 到 4),总的网络深度从 11 层到 19 层(添加的层以粗体显示),表格中的卷积层参数表示为 “conv〈感受野大小〉- 通道数〉”,例如 con3-128,表示使用 3x3 的卷积核,通道数为 128。为了简洁起见,在表格中不显示 ReLU 激活功能。
其中,网络结构 D 就是著名的 VGG16,网络结构 E 就是著名的 VGG19。

        以网络结构 D(VGG16)为例,介绍其处理过程如下,请对比上面的表格和下方这张图,留意图中的数字变化,有助于理解 VGG16 的处理过程:

1 、输入 224x224x3 的图片,经 64 个 3x3 的卷积核作两次卷积 + ReLU,卷积后的尺寸变为 224x224x64
2、作 max pooling(最大化池化),池化单元尺寸为 2x2(效果为图像尺寸减半),池化后的尺寸变为 112x112x64
3、经 128 个 3x3 的卷积核作两次卷积 + ReLU,尺寸变为 112x112x128
4、作 2x2 的 max pooling 池化,尺寸变为 56x56x128
5、经 256 个 3x3 的卷积核作三次卷积 + ReLU,尺寸变为 56x56x256
6、作 2x2 的 max pooling 池化,尺寸变为 28x28x256
7、经 512 个 3x3 的卷积核作三次卷积 + ReLU,尺寸变为 28x28x512
8、作 2x2 的 max pooling 池化,尺寸变为 14x14x512
9、经 512 个 3x3 的卷积核作三次卷积 + ReLU,尺寸变为 14x14x512
10、作 2x2 的 max pooling 池化,尺寸变为 7x7x512
11、与两层 1x1x4096,一层 1x1x1000 进行全连接 + ReLU(共三层)
12、通过 softmax 输出 1000 个预测结果

其简化图如下(以 VGG16 为例): 

代码实现:新建vggNet.py

import torch
import torch.nn as nn
import torch.nn.functional as Fclass VGGbase(nn.Module):def __init__(self, num_classes=10):super(VGGbase, self).__init__()self.conv1 = nn.Sequential(  # 定义第1个卷积层# Sequential 是一个容器,它可以包含一系列的神经网络层(layers),并按顺序执行它们。具体来说,# nn.Sequential( 允许您将多个层定义为一个整体,这个整体可以被视为一个单独的层。# 当您向神经网络传递数据时,数据会依次通过 Sequential 中定义的每一层。# 这种方式简化了网络结构的定义和理解,尤其是在构建较为复杂的网络时。nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),  # 输入通道为3,输出通道为64,卷积核大小为3x3,步长为1,填充为1nn.BatchNorm2d(64),  # 批量归一化# nn.BatchNorm2d 表示对二维输入进行批量归一化,参数 64 通常代表输入特征的通道数。批量归一化的作用是在神经网络训练过程中,对每一批次的数据进行归一化处理,# 使得数据的分布更加稳定,有助于加速训练过程、提高模型的泛化能力。nn.ReLU()  # 激活函数)self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)  # 最大池化,池化核大小为2x2,步长为2# 经过第一层卷积后,图像的尺寸为 16x16,通道数为64self.conv2_1 = nn.Sequential(  # 定义第2个卷积层的第一次卷积nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),  # 输入通道为64,输出通道为128,卷积核大小为3x3,步长为1,填充为1nn.BatchNorm2d(128),  # 批量归一化nn.ReLU()  # 激活函数)self.conv2_2 = nn.Sequential(  # 定义第2个卷积层的第二次卷积nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1),  # 输入通道为64,输出通道为128,卷积核大小为3x3,步长为1,填充为1nn.BatchNorm2d(128),  # 批量归一化nn.ReLU()  # 激活函数)self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)  # 最大池化,池化核大小为2x2,步长为2# 经过第二层卷积后,图像的尺寸为 8x8,通道数为128self.conv3_1 = nn.Sequential(  # 定义第3个卷积层的第一次卷积nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),  # 输入通道为64,输出通道为128,卷积核大小为3x3,步长为1,填充为1nn.BatchNorm2d(256),  # 批量归一化nn.ReLU()  # 激活函数)self.conv3_2 = nn.Sequential(  # 定义第3个卷积层的第二次卷积nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),nn.BatchNorm2d(256),  # 批量归一化nn.ReLU()  # 激活函数)self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)# 经过第三层卷积后,图像的尺寸为 4x4,通道数为256self.conv4_1 = nn.Sequential(  # 定义第4个卷积层的第一次卷积nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),nn.BatchNorm2d(512),  # 批量归一化nn.ReLU()  # 激活函数)self.conv4_2 = nn.Sequential(  # 定义第4个卷积层的第二次卷积nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),nn.BatchNorm2d(512),  # 批量归一化nn.ReLU()  # 激活函数)self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)  # 最大池化,池化核大小为2x2,步长为2# 经过第四层卷积后,图像的尺寸为 2x2,通道数为512self.fc = nn.Linear(512 * 4, num_classes)  # 全连接层,输入为512*4,输出为10def forward(self, x):   # 定义前向传播过程batch_size = x.size(0)  # 获取输入的batch_sizex = self.conv1(x)  # 第1个卷积层x = self.pool1(x)  # 第1个池化层x = self.conv2_1(x)  # 第2个卷积层x = self.conv2_2(x)  # 第2个卷积层x = self.pool2(x)  # 第2个池化层x = self.conv3_1(x)  # 第3个卷积层x = self.conv3_2(x)  # 第3个卷积层x = self.pool3(x)  # 第3个池化层x = self.conv4_1(x)  # 第4个卷积层x = self.conv4_2(x)  # 第4个卷积层x = self.pool4(x)  # 第4个池化层x = x.view(batch_size, -1)  # 将图片展开成一行,-1表示自动计算这一维的大小x = self.fc(x)   # 全连接层output = F.log_softmax(x, dim=1)  # 对输出进行log_softmax处理return outputdef VGGNet():  # 定义网络结构的应用函数return VGGbase()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/883167.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【LeetCode】11.盛最多水的容器

思路: 利用双指针法进行移动,一个在头一个在尾,此时宽度最宽,当宽度缩小时,高度发生变化,从而可以找到最大值。 代码: int maxArea(int* height, int heightSize) {int* left height;int* …

仿真学习 | Fluent版本迭代一览及选择指南

在计算机辅助工程(CAE)领域,软件版本的更新迭代,影响了工程师的工作效率、工作习惯和仿真精度,“如何选择软件版本”也永远是摆在每个初学者面前的第一个难题。 计算流体动力学(CFD)领域的领军…

嵌入式工程师必备——NTC曲线拟合

最近搞了一下NTC热敏电阻,打算和大家分享一下; 首先看NTC手册,25℃时是5K,温度系数B是3470,有一些NTC会直接给出公式,那种直接按照手册计算就好; 1、下面是温度和阻值对照表,这个表…

深度学习:YOLO目标检测和YOLO-V1算法损失函数的计算

简介 YOLO(You Only Look Once)是一种基于深度学习的目标检测算法,它的核心思想是将目标检测问题转化为一个回归问题,通过一个神经网络直接预测目标的类别和位置。 YOLO算法将输入图像分成SxS个网格,每个网格负责预测…

Golang | Leetcode Golang题解之第498题对角线遍历

题目&#xff1a; 题解&#xff1a; func findDiagonalOrder(mat [][]int) []int {m, n : len(mat), len(mat[0])ans : make([]int, 0, m*n)for i : 0; i < mn-1; i {if i%2 1 {x : max(i-n1, 0)y : min(i, n-1)for x < m && y > 0 {ans append(ans, mat[x…

uni-app微信小程序如何使用高德地图。通过经纬度获取所在城市

高德地图官方是这样介绍的使用方法可以参考&#xff1a;入门指南-微信小程序插件 | 高德地图API 我再介绍一下我得具体应用。 1&#xff0c;首先要在申请高德地图开放平台得账号。然后在这个账号中申请一个应用。类型选择微信小程序。 我的应用 | 高德控制台 获取Key-创建工…

怎样把学生的成绩单独告知家长?

期中考试季的到来让校园里的气氛似乎也变得紧张起来。家长们开始频繁地联系老师&#xff0c;希望了解孩子的表现&#xff1b;孩子们则在考试后&#xff0c;绞尽脑汁地想出各种理由&#xff0c;以期在成绩不理想时能减轻家长的失望。老师们更是忙得不可开交&#xff0c;不仅要批…

C++(标准输入输出流、命名空间、string字符串、引用)

C特点及优势 &#xff08;1&#xff09;实现了面向对象&#xff0c;在高级语言中&#xff0c;处理运行速度是最快&#xff1b; &#xff08;2&#xff09;非常灵活&#xff0c;功能非常强大&#xff0c;相对于C的指针优势&#xff0c;C的优势为性能和类层次结构&#x…

【天气识别系统】Python+卷积神经网络算法+人工智能+深度学习+TensorFlow+算法模型训练+Django网页界面

一、介绍 天气识别系统&#xff0c;以Python作为主要编程语言&#xff0c;通过收集了4种常见的天气图像数据集&#xff08;多云、雨天、晴天、日出&#xff09;&#xff0c;然后基于TensorFlow搭建卷积神经网络算法模型&#xff0c;通过多轮迭代训练&#xff0c;最后得到一个识…

Go 语言基础教程:6.条件判断

在这篇教程中&#xff0c;我们将通过一个简单的 Go 语言程序来学习条件判断结构的使用。以下是我们要分析的代码&#xff1a; package mainimport "fmt"func main() {if 7%2 0 {fmt.Println("7 is even")} else {fmt.Println("7 is odd")}if 8…

社交媒体与客户服务:新时代的沟通桥梁

在数字化时代&#xff0c;社交媒体已成为人们日常生活中不可或缺的一部分&#xff0c;它不仅改变了人们的沟通方式&#xff0c;也深刻影响着企业的客户服务模式。从传统的电话、邮件到如今的社交媒体平台&#xff0c;客户服务的渠道正在经历一场前所未有的变革。社交媒体以其即…

聚类分析算法——K-means聚类 详解

K-means 聚类是一种常用的基于距离的聚类算法&#xff0c;旨在将数据集划分为 个簇。算法的目标是最小化簇内的点到簇中心的距离总和。下面&#xff0c;我们将从 K-means 的底层原理、算法步骤、数学基础、距离度量方法、参数选择、优缺点 和 源代码实现 等角度进行详细解析。…

Easy Excel合并单元格情况简单导入导出

需求 实现报表数据的导入导出&#xff0c;表格中部分数据是系统生成&#xff0c;部分数据是甲方填写&#xff0c;录入系统。 批号唯一 Maven <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>3.…

《IDE 巧用法宝:使用技巧全解析与优质插件推荐》

在日常撸代码的时候&#xff0c;相信兄弟们在IDEA 中用到不少插件&#xff0c;利用插件&#xff0c;不仅可以提高工具效率&#xff0c;撸起代码来&#xff0c;也格外的娃哈哈…… 一、IntelliJ IDEA 作为一个资深 Java 程序员&#xff0c;除了 IDEA 中默认的插件&#xff0c;我…

linux入门之必掌握知识点

#1024程序员节&#xff5c;征文# Linux基础 top命令详解 top命令是用来查看进程系统资源使用情况的工具&#xff0c;它可以动态的现实。 top命令执行后&#xff0c;按大写M可以按内存使用情况进行排序&#xff0c;大写P可以按CPU使用情况进行排序&#xff0c;大写H可以显示线…

GNN+A2C 强化学习训练一个粒子避障决策模型

最近想尝试下使用GNN A2C 进行强化学习&#xff0c;GNN 可以充当一个特征提取器&#xff0c;这样可以增加强化学状态空间因为张量长度受限泛化能力不足的缺点&#xff0c;之前做强化学习的时候受限于需要在环境里提取每个对手的特征&#xff0c;在每个不同场景下因为对手的数量…

使用excel.js(layui-excel)进行layui多级表头导出,根据单元格内容设置背景颜色,并将导出函数添加到toolbar

本段是菜狗子的碎碎念&#xff0c;解决办法请直接从第二段开始看。layui多级表头的导出&#xff0c;弄了两天才搞定&#xff0c;中途一度想放弃&#xff0c;还好坚持下来了。一开始用的是layui的toolbar里自带的那个导出&#xff0c;但是多级表头没有正常导出&#xff0c;单元格…

【功能安全】技术安全概念TSC

目录 01 TSC定义 02 TSC注意事项 03 TSC案例 01 TSC定义 所处位置 TSC:Technical safety concept技术安全概念 TSR:Technical safety requirement技术安全需求 在系统开发阶段属于安全活动4-6 系统层产品开发示例 TSC目的

Codeforces Round 981 (Div. 3)

前言&#xff1a; 记录一下自己昨天晚上打的div3吧&#xff0c;感觉自己好久没写博客&#xff0c;以后可能会更新一些其他内容&#xff0c;在这里先买个关子&#xff0c;我要现在今年沉淀几个月&#xff0c;所以这几天可能不会更新博客&#xff0c;今天先出来冒个泡先。 正文&a…

数理统计(第3章:单侧假设检验)

目录 概念&#xff0c;步骤 单个正态母体 两个正态母体 概念&#xff0c;步骤 如果构造统计量是一个未知数&#xff0c;则构造不成统计量&#xff0c;所以拿来构造统计量&#xff0c;用保守估计作为假设&#xff1a;有无显著提高&#xff0c;减小&#xff0c;则假设没有显著…