深度学习:YOLO目标检测和YOLO-V1算法损失函数的计算

简介

YOLO(You Only Look Once)是一种基于深度学习的目标检测算法,它的核心思想是将目标检测问题转化为一个回归问题,通过一个神经网络直接预测目标的类别和位置。

YOLO算法将输入图像分成SxS个网格,每个网格负责预测该网格内是否存在目标以及目标的类别和位置信息。此外,YOLO算法还采用了多尺度特征融合的技术,使得算法能够在不同尺度下对目标进行检测。 相比于传统的目标检测算法,如R-CNN、Fast R-CNN和Faster R-CNN等,YOLO算法具有更快的检测速度和更高的准确率。这得益于其端到端训练方式和单阶段检测的特性,使其可以同时处理分类和定位任务,避免了传统方法中的多阶段处理过程。因此,YOLO算法广泛应用于实时目标检测和自动驾驶等领域。

one-stage的优缺点:

优点:识别速度非常快,适合做实时检测任务

缺点:正确率相比较低

two-stage的优缺点:

优点:正确率比较高,识别效果理想

缺点:识别速度比较慢,通常达到5FPS

两阶段目标检测器是一种先生成候选框,然后对候选框进行分类和回归的检测方法。

这种方法主要包括两个阶段:

第一阶段:生成候选框。该算法从输入图像中生成多个候选框。每个候选框都会经过一个CNN模型进行特征提取,然后通过分类器进行过滤,保留与目标物体更相似的候选框。

第二阶段:在保留的候选框上进行精细的分类和回归。这个阶段通常使用另一个CNN模型或类似SVM的分类器来进行分类和回归。对于每个候选框,可能需要预测物体的类别、位置和大小等。 代表性的两阶段目标检测器包括R-CNN系列,以及其改进版本Fast R-CNN、Faster R-CNN和Mask R-CNN等。

Map指标

根据不同的阈值,绘制出召回率和精确率的曲线,将曲线以下的面积作为MAP值。当MAP值越大,则表示指标越好 。

网络架构

网络结构借鉴了 GoogLeNet 。24个卷积层,2个全链接层。(用1×1 reduction layers 紧跟 3×3 convolutional layers 取代Goolenet的 inception modules )

7×7意味着7×7个grid cell,30表示每个grid cell包含30个信息,其中2个预测框,每个预测框包含5个信息(x y w h c),分别为中心点位置坐标,宽高以及置信度,剩下20个是针对数据集的20个种类的预测概率。其中坐标的x,y用对应网格的归一化到0-1之间,w,h用图像的width和height归一化到0-1之间。

Yolo系列 v1 损失函数

YOLO-V1算法最后输出的检测结果为7x7x30的形式,其中30个值分别包括两个候选框的位置和有无包含物体的置信度以及网格中包含20个物体类别的概率。那么YOLO的损失就包括三部分:位置误差,confidence误差,分类误差。 

i为第几个分格,j为预选框(总共两种)

i=30,j=1(1代表黄色的框,2代表蓝色的框)

位置误差

x,y为中心点坐标,w,h为预选框的长和宽

i=30时候为1,其他时候为0

i=30,j=1时候为1,其他时候为0

i=30,j=1时候为0,其他时候为1

confidence误差

置信度

c=Pr(Object)*lou

边界框内是否存在物体(Pr(Object)),以及边界框与真实物体的匹配程度(IOU)

分类误差

非极大值抑制(Non-Maximum Suppression,NMS)

目标检测中常用的一种技术,其主要作用是去除可能小的的检测框,只保留最有可能包含目标物体的框,从而提高检测的准确性和效率。

YOLO V1存在的优缺点:

优点

  1. 实时性
  2. 网络结构简单
  3. 多对象检测
  4. 泛化能力

缺点

  1. 定位精度
  2. 召回率低
  3. 对小目标检测不佳
  4. 每个cell只能生成有限的框

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/883162.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Golang | Leetcode Golang题解之第498题对角线遍历

题目&#xff1a; 题解&#xff1a; func findDiagonalOrder(mat [][]int) []int {m, n : len(mat), len(mat[0])ans : make([]int, 0, m*n)for i : 0; i < mn-1; i {if i%2 1 {x : max(i-n1, 0)y : min(i, n-1)for x < m && y > 0 {ans append(ans, mat[x…

uni-app微信小程序如何使用高德地图。通过经纬度获取所在城市

高德地图官方是这样介绍的使用方法可以参考&#xff1a;入门指南-微信小程序插件 | 高德地图API 我再介绍一下我得具体应用。 1&#xff0c;首先要在申请高德地图开放平台得账号。然后在这个账号中申请一个应用。类型选择微信小程序。 我的应用 | 高德控制台 获取Key-创建工…

【算法】超快理解冒泡排序(含c#、c++、java、python代码)

冒泡排序概述 冒泡排序是一种简单的排序算法&#xff0c;它通过重复地遍历要排序的列表&#xff0c;一次比较两个元素并交换它们的位置&#xff0c;如果它们的顺序不正确。这个过程会不断重复&#xff0c;直到列表中的所有元素都被排序完成。 用小学的思维来看&#xff0c;可…

怎样把学生的成绩单独告知家长?

期中考试季的到来让校园里的气氛似乎也变得紧张起来。家长们开始频繁地联系老师&#xff0c;希望了解孩子的表现&#xff1b;孩子们则在考试后&#xff0c;绞尽脑汁地想出各种理由&#xff0c;以期在成绩不理想时能减轻家长的失望。老师们更是忙得不可开交&#xff0c;不仅要批…

C++(标准输入输出流、命名空间、string字符串、引用)

C特点及优势 &#xff08;1&#xff09;实现了面向对象&#xff0c;在高级语言中&#xff0c;处理运行速度是最快&#xff1b; &#xff08;2&#xff09;非常灵活&#xff0c;功能非常强大&#xff0c;相对于C的指针优势&#xff0c;C的优势为性能和类层次结构&#x…

登录的时候密码使用crypto-js加密解密

首先要下载插件 npm install crypto-js 然后新建一个js文件 crypto.js // 导入 CryptoJS 模块 import CryptoJS from crypto-js; const secretKey"pZsgDSvzaeHWDkhLDxvrrrYvBlAsIHmZ";//一般是后端提供的 /*** description: 加解密函数* param {*} data 需要加密的数…

【天气识别系统】Python+卷积神经网络算法+人工智能+深度学习+TensorFlow+算法模型训练+Django网页界面

一、介绍 天气识别系统&#xff0c;以Python作为主要编程语言&#xff0c;通过收集了4种常见的天气图像数据集&#xff08;多云、雨天、晴天、日出&#xff09;&#xff0c;然后基于TensorFlow搭建卷积神经网络算法模型&#xff0c;通过多轮迭代训练&#xff0c;最后得到一个识…

Go 语言基础教程:6.条件判断

在这篇教程中&#xff0c;我们将通过一个简单的 Go 语言程序来学习条件判断结构的使用。以下是我们要分析的代码&#xff1a; package mainimport "fmt"func main() {if 7%2 0 {fmt.Println("7 is even")} else {fmt.Println("7 is odd")}if 8…

社交媒体与客户服务:新时代的沟通桥梁

在数字化时代&#xff0c;社交媒体已成为人们日常生活中不可或缺的一部分&#xff0c;它不仅改变了人们的沟通方式&#xff0c;也深刻影响着企业的客户服务模式。从传统的电话、邮件到如今的社交媒体平台&#xff0c;客户服务的渠道正在经历一场前所未有的变革。社交媒体以其即…

聚类分析算法——K-means聚类 详解

K-means 聚类是一种常用的基于距离的聚类算法&#xff0c;旨在将数据集划分为 个簇。算法的目标是最小化簇内的点到簇中心的距离总和。下面&#xff0c;我们将从 K-means 的底层原理、算法步骤、数学基础、距离度量方法、参数选择、优缺点 和 源代码实现 等角度进行详细解析。…

Easy Excel合并单元格情况简单导入导出

需求 实现报表数据的导入导出&#xff0c;表格中部分数据是系统生成&#xff0c;部分数据是甲方填写&#xff0c;录入系统。 批号唯一 Maven <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>3.…

《IDE 巧用法宝:使用技巧全解析与优质插件推荐》

在日常撸代码的时候&#xff0c;相信兄弟们在IDEA 中用到不少插件&#xff0c;利用插件&#xff0c;不仅可以提高工具效率&#xff0c;撸起代码来&#xff0c;也格外的娃哈哈…… 一、IntelliJ IDEA 作为一个资深 Java 程序员&#xff0c;除了 IDEA 中默认的插件&#xff0c;我…

linux入门之必掌握知识点

#1024程序员节&#xff5c;征文# Linux基础 top命令详解 top命令是用来查看进程系统资源使用情况的工具&#xff0c;它可以动态的现实。 top命令执行后&#xff0c;按大写M可以按内存使用情况进行排序&#xff0c;大写P可以按CPU使用情况进行排序&#xff0c;大写H可以显示线…

GNN+A2C 强化学习训练一个粒子避障决策模型

最近想尝试下使用GNN A2C 进行强化学习&#xff0c;GNN 可以充当一个特征提取器&#xff0c;这样可以增加强化学状态空间因为张量长度受限泛化能力不足的缺点&#xff0c;之前做强化学习的时候受限于需要在环境里提取每个对手的特征&#xff0c;在每个不同场景下因为对手的数量…

桂城真题2022年

第一题&#xff0c;放球 题目描述 在一个无穷大的桌面上&#xff0c;一开始没有小球&#xff0c;现在小明从左往右放小球&#xff0c;重复如下步骤无穷次&#xff1a; 在当前所有小球的最右边放 R 个红球。 在当前所有小球的最右边放 B 个黑球。 你的任务是计算从左往右看…

使用excel.js(layui-excel)进行layui多级表头导出,根据单元格内容设置背景颜色,并将导出函数添加到toolbar

本段是菜狗子的碎碎念&#xff0c;解决办法请直接从第二段开始看。layui多级表头的导出&#xff0c;弄了两天才搞定&#xff0c;中途一度想放弃&#xff0c;还好坚持下来了。一开始用的是layui的toolbar里自带的那个导出&#xff0c;但是多级表头没有正常导出&#xff0c;单元格…

localStorage是什么 做什么用的

1.localStorage是什么 localStorage是浏览器中window对象的一个只读属性&#xff0c;但可以通过window.localStorage或localStorage属性来访问它&#xff0c;并用于存储键值对。这些数据是特定于文档协议的&#xff0c;即对于通过HTTP加载的站点和通过HTTPS加载的相应站点&…

【功能安全】技术安全概念TSC

目录 01 TSC定义 02 TSC注意事项 03 TSC案例 01 TSC定义 所处位置 TSC:Technical safety concept技术安全概念 TSR:Technical safety requirement技术安全需求 在系统开发阶段属于安全活动4-6 系统层产品开发示例 TSC目的

Codeforces Round 981 (Div. 3)

前言&#xff1a; 记录一下自己昨天晚上打的div3吧&#xff0c;感觉自己好久没写博客&#xff0c;以后可能会更新一些其他内容&#xff0c;在这里先买个关子&#xff0c;我要现在今年沉淀几个月&#xff0c;所以这几天可能不会更新博客&#xff0c;今天先出来冒个泡先。 正文&a…