AI学习指南深度学习篇-自注意力机制(Self-Attention Mechanism)

AI学习指南深度学习篇—自注意力机制(Self-Attention Mechanism)

在深度学习的研究领域,自注意力机制(Self-Attention Mechanism)作为一种创新的模型结构,已成为了神经网络领域的一个重要组成部分,尤其在处理序列数据上表现出了惊人的效果。本文将详细介绍自注意力机制的原理,包括查询(Query)、键(Key)、值(Value)的计算过程,以及注意力分数的计算方法。同时,我们还将探讨自注意力机制在Transformer模型中的作用及其建模长距离依赖关系的能力。通过示例,我们将为读者提供对自注意力机制的深入理解。

1. 自注意力机制概述

自注意力机制是一种使得模型能够在处理输入序列时,有效地关注到序列中各个元素之间的关系。与传统的卷积和循环神经网络(RNN)不同,自注意力机制能够在单一的计算步骤中捕捉到序列中不同位置之间的相互关系。

1.1 特点

  • 并行处理:自注意力机制能够并行处理输入序列的元素,相较于RNN在时间维度上逐步计算的方式,有效提升了计算效率。

  • 长距离依赖:自注意力能够直接关注输入序列中所有位置的元素,这使得模型具备了建模长距离依赖关系的能力。

  • 动态特征选择:通过注意力得分,模型能够动态地选择关注哪些输入特征,而非固定的卷积核或RNN状态。

2. 基本原理与计算过程

2.1 查询(Query)、键(Key)、值(Value)

在自注意力机制中,输入序列经由线性变换得到三个向量:查询(Query)、键(Key)和值(Value)。对于输入序列的每个元素,我们需要计算这些向量。

设输入序列为 ( X = [ x 1 , x 2 , … , x n ] ) ( X = [x_1, x_2, \ldots, x_n] ) (X=[x1,x2,,xn]),每个元素 ( x i ) ( x_i ) (xi) 是一个特征向量(如词嵌入)。我们通过三个线性变换分别获得查询、键和值:

[ Q = X W Q , K = X W K , V = X W V ] [ Q = XW^Q, \quad K = XW^K, \quad V = XW^V ] [Q=XWQ,K=XWK,V=XWV]

其中:

  • ( W Q , W K , W V ) ( W^Q, W^K, W^V ) (WQ,WK,WV) 为权重矩阵。
  • ( Q , K , V ) ( Q, K, V ) (Q,K,V) 分别为查询、键、值矩阵。

2.2 注意力权重计算

接下来,我们计算注意力权重。注意力权重量化了输入中每个元素对其它元素的关注程度。为此,我们首先计算查询与键的点积,然后通过softmax函数归一化得到每个元素的注意力分数。

具体步骤如下:

  1. 计算注意力分数

[ Attention_Scores = Q K T d k ] [ \text{Attention\_Scores} = \frac{QK^T}{\sqrt{d_k}} ] [Attention_Scores=dk QKT]

  • ( d k ) ( d_k ) (dk) 是键向量的维度,做缩放可以防止点积结果过大引发的梯度消失问题。
  1. 应用softmax获得注意力权重

[ Attention_Weights = softmax ( Attention_Scores ) ] [ \text{Attention\_Weights} = \text{softmax}\left(\text{Attention\_Scores}\right) ] [Attention_Weights=softmax(Attention_Scores)]

2.3 加权平均计算输出

最后,注意力权重与值向量相乘以获得最终输出。公式如下:

[ Output = Attention_Weights V ] [ \text{Output} = \text{Attention\_Weights} V ] [Output=Attention_WeightsV]

3. 自注意力机制示例

为了更好地理解自注意力机制的计算过程,下面将通过一个具体的示例来阐释。

示例输入

假设有一个输入序列:

[ X = [ 1 0 0 0 1 0 0 0 1 ] ] [ X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} ] [X= 100010001 ]

假设权重矩阵为:

[ W Q = W K = W V = [ 1 0 0 1 1 1 ] ] [ W^Q = W^K = W^V = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} ] [WQ=WK=WV= 101011 ]

3.1 计算查询、键和值

根据前述公式,我们计算得到:

[ Q = X W Q = [ 1 0 0 1 0 0 ] , K = X W K = [ 1 0 0 1 0 0 ] ] [ Q = XW^Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad K = XW^K = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} ] [Q=XWQ= 100010 ,K=XWK= 100010 ]

[ V = X W V = [ 1 0 0 1 0 0 ] ] [ V = XW^V = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} ] [V=XWV= 100010 ]

3.2 计算注意力分数

接着计算注意力分数:

[ Attention_Scores = Q K T d k = 1 2 [ 1 0 0 0 1 0 ] [ 1 0 0 1 0 0 ] = 1 2 [ 1 0 0 0 1 0 ] ] [ \text{Attention\_Scores} = \frac{QK^T}{\sqrt{d_k}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} ] [Attention_Scores=dk QKT=2 1[100100] 100010 =2 1[100100]]

3.3 应用softmax

接下来对注意力分数进行softmax变换:

[ Attention_Weights = softmax ( Attention_Scores ) = softmax ( [ 1 2 0 0 0 1 2 0 ] ) ] [ \text{Attention\_Weights} = \text{softmax}\left(\text{Attention\_Scores}\right) = \text{softmax}\left(\begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 \end{bmatrix}\right) ] [Attention_Weights=softmax(Attention_Scores)=softmax([2 1002 100])]

经过softmax得到的注意力权重为:

[ Attention_Weights = [ 1 2 1 2 0 0 1 2 1 2 ] ] [ \text{Attention\_Weights} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix} ] [Attention_Weights=[2102121021]]

3.4 计算输出

最后计算输出:

[ Output = Attention_Weights V = [ 1 2 1 2 0 0 1 2 1 2 ] [ 1 0 0 1 0 0 ] = [ 1 2 1 2 0 0 ] ] [ \text{Output} = \text{Attention\_Weights} V = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & 0 \end{bmatrix} ] [Output=Attention_WeightsV=[2102121021] 100010 =[210210]]

这就是自注意力机制计算的完整流程,从计算查询、键、值到最终输出。

4. 自注意力机制在Transformer中的应用

自注意力机制的引入,极大地推动了Transformer模型的发展。Transformer模型是由编码器和解码器组成,广泛应用于机器翻译、文本生成等自然语言处理任务。下面我们将分析自注意力机制在Transformer中的具体作用。

4.1 编码器部分

在Transformer的编码器中,输入的每一个词通过自注意力机制与整个输入序列相互动。通过这一方式,模型可以获得每个词在上下文中的含义,从而生成更有信息量的表示。这一过程能够有效地捕获长距离的依赖关系,例如在句子中,当上下文中离当前词很远的成分对其有重要影响时,自注意力机制能够帮助捕获这种关系。

4.2 解码器部分

Transformer的解码器同样使用自注意力机制,但加上了屏蔽机制(Masked Attention)。屏蔽机制确保在生成当前词的过程中,仅依赖于已生成的词,而不会参照未来的信息。这一机制克服了传统RNN在生成过程中需要逐步进行计算的问题,增加了计算的并行性。

4.3 结合位置编码

由于自注意力机制本身缺乏位置感知能力,Transformer使用位置编码(Positional Encoding)为模型提供位置信息。位置编码通过与输入向量相加的方式,帮助模型理解序列中不同元素的相对或绝对位置。

5. 自注意力机制的优势

5.1 高效的长距离依赖建模

自注意力机制的并行计算能力和对任意位置之间关系的关注,使得它能够以较低的计算成本捕捉长距离依赖。尤其在长文本处理时,传统RNN容易面临“记忆丢失”的问题,而自注意力机制则能够长期保持信息。

5.2 灵活的特征选择

通过动态计算的注意力权重,模型可在不同训练阶段自动决定关注那些特征。这种能力使得模型能够在多样化的数据上表现良好,适应性强。

5.3 状态无关性

自注意力机制不依赖于前一状态,其输出仅依赖当前输入,这带来了更好的解释性,同时也使得并行处理成为可能。

6. 自注意力机制的局限性

尽管自注意力机制有诸多优点,但也存在一些局限性:

6.1 计算开销

随着序列长度的增加,自注意力机制的计算量会呈现平方级别的增长,对于非常长的序列,可能导致计算效率下降。因此,在实际应用中,往往需要对序列进行长度控制或处理。

6.2 存储需求

自注意力机制需要存储注意力矩阵及其权重,这在大规模模型中也会导致高额的内存需求。

7. 未来展望

自注意力机制作为深度学习领域的重要组成部分,已得到广泛关注和研究。未来,我们可以期待以下几个发展方向:

  • 高效化:研究如何降低自注意力机制的时间复杂度和空间复杂度,从而使其能够处理更长的序列。

  • 融合其他机制:尝试将自注意力与其他机制,如卷积或递归网络结合,寻找在某些应用场景下更优的解决方案。

  • 应用扩展:自注意力机制不仅限于自然语言处理领域,在计算机视觉、图像生成等领域同样具有巨大潜力。

结论

自注意力机制作为一种强大的建模工具,为处理长序列数据开辟了新的道路。通过动态地捕捉输入数据中各个元素之间的关系,模型得以在较低的成本下取得较好的性能。随着相关技术的不断进步,自注意力机制将在AI的多个领域发挥更大的作用,为未来的研究和应用提供更广阔的平台。希望本文对读者理解自注意力机制有所帮助,并激励读者深入探索这个激动人心的领域。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/883095.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring MVC(下)

博主主页: 码农派大星. 数据结构专栏:Java数据结构 数据库专栏:MySQL数据库 JavaEE专栏:JavaEE 关注博主带你了解更多JavaEE知识 目录 1.响应 1.1 返回静态页面 1.2 返回数据ResponseBody 1.3 返回HTML代码⽚段 1.4 返回JSON 1.5 设置状态码 1.6 设置Header 2 . …

【文献及模型、制图分享】基于国际湿地城市视角的常德市湿地保护修复成效与归因分析及其政策启示

文献介绍 《湿地公约》提出的“国际湿地城市”认证是促进湿地保护修复的新举措。以国际湿地城市常德市为例,基于2000—2022年15 m空间分辨率湿地分类数据,监测常德市湿地保护修复逐年动态变化,定量分析湿地保护修复驱动因素的重要性和贡献率…

K8s中TSL证书如何续期

TSL是什么 K8s中的作用是什么? 在 Kubernetes(K8s)中,TSL 指的是 Transport Layer Security,也就是传输层安全协议。它是用来保护在网络上传输的数据的安全性和隐私性。 TSL 在 Kubernetes 中的作用包括:…

第1讲(ASP.NET Core 6 Web Api 开发入门):第一个Web Api项目

一、运行模板项目 二、验证模板项目的api 法1:直接在网页上进行验证api 法2:通过命令行验证api 复制下图的Curl语句,打开命令行进行粘贴。(对于windows系统,需要把换成",再去掉所有的/,最…

一文了解AOSP是什么?

一文了解AOSP是什么? AOSP基本信息 基本定义 AOSP是Android Open Source Project的缩写,这是一个由Google维护的完全免费和开放的操作系统开发项目。它是Android系统的核心基础,提供了构建移动操作系统所需的基本组件。 主要特点 完全开源…

【景观生态学实验】实验一 ArcGIS地理数据处理及制图基础

实验目的 1.掌握ArcGIS软件基本操作:通过实验操作与学习,熟练掌握ArcGIS软件相关的基本操作,包括界面熟悉、工具栏使用、数据的加载和保存、基本数据处理操作等; 2.掌握如何使用ArcGIS进行影像拼接及裁剪:通过实验操作与学习&am…

传知代码-ChatGPT多模态命名实体识别

代码以及视频讲解 本文所涉及所有资源均在传知代码平台可获取 ChatGPT辅助细化知识增强! 多模态命名实体识别(MNER)最近引起了广泛关注。 用户在社交媒体上生成大量非结构化内容,主要由图像和文本组成。这些帖子具有与社交媒体相…

GISBox vs CesiumLab:哪款GIS工具更适合你的项目?

在地理信息系统(GIS)领域,越来越多的用户开始关注GIS工具箱的选择,其中GISBox和CesiumLab是两款备受推崇的产品。那么,哪一款更适合你的需求呢?本文将从功能、使用体验和应用场景等方面,对GISBo…

产品如何实现3D展示?具体步骤如下

产品实现3D展示主要依赖于先进的3D建模与展示技术。以下是产品实现3D展示的具体步骤和方法: 一、3D建模 使用专业的3D建模软件,如Blender、Maya、3ds Max等,这些软件提供了丰富的建模工具和材质编辑器,能够创建出高精度的3D模型…

Python基于amazon/chronos-t5-base的预训练模型离线对时间系列数据的未来进行预测

Python基于预训练模型对时间系列数据的未来进行预测 导入库 %matplotlib inline import matplotlib.pyplot as plt import numpy as np import pandas as pd import torch from chronos import ChronosPipeline from tqdm.auto import tqdm from autogluon.timeseries import…

电脑定期运行某个程序

1、右键计算机-管理,点击任务计划程序,再点击创建基本任务; 2、写名称,下一步 3、选择任务开始计划,下一步 4、选择触发时间,下一步 5、选择启动程序,下一步 6、选择运行的程序,下一…

模型拆解(一):DBINet、GCPANet、CPD、ACCoNet、FPS-U2Net

文章目录 一、DBINet1.1编码器模块:ResNet50PVT双分支结构1.2解码器模块:自细化模块SR的应用1.3DFM:双分支融合模块1.4转换器模块:调整编码器输出至解码器中1.5深度监督损失函数 二、GCPANet2.1编码器模块:ResNet50主干…

uniapp移动端优惠券! 附源码!!!!

本文为常见的移动端uniapp优惠券,共有6种优惠券样式(参考了常见的优惠券),文本内容仅为示例,您可在此基础上调整为你想要的文本 预览效果 通过模拟数据,实现点击使用优惠券让其变为灰色的效果(模…

来自骨关节炎计划的膝关节MR图像的自动异常感知3D骨骼和软骨分割|文献速递-基于生成模型的数据增强与疾病监测应用

Title 题目 Automated anomaly-aware 3D segmentation of bones and cartilages in kneeMR images from the Osteoarthritis Initiative 来自骨关节炎计划的膝关节MR图像的自动异常感知3D骨骼和软骨分割 Background 背景 近年来,多个机器学习算法被提出用于图像…

windows|常见的文件伪装方法

几种常见的文件伪装方法: 扩展名伪装unicode字符伪装压缩包伪装隐写术 方法仅限于学习目的,不用于任何恶意或非法用途。 ———— 一、扩展名伪装:假装是另一种类型的文件 修改文件的扩展名,使得文件看起来像其他类型的文件&a…

python常用设计模式,单例模式和工厂设计模式

python常用设计模式,单例和工厂设计模式Demo 单例模式 单例设计模式是一种创建型设计模式,它确保一个类只有一个实例,并提供一个全局访问点来获取该实例。 应用场景:日志记录、线程池、缓存等 优点: 全局访问&…

洛谷题解 - P1162 填涂颜色

目录 填涂颜色题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 提示题解思路代码 填涂颜色 题目描述 由数字 0 0 0 组成的方阵中,有一任意形状的由数字 1 1 1 构成的闭合圈。现要求把闭合圈内的所有空间都填写成 2 2 2。例如: 6 6 6\times…

python的散列类型与字符编码

文章目录 一、 初识散列类型(无序序列)二、认识集合集合的方法增删 二、认识字典字典方法增删改查 声明空变量 三、字符编码元组名() #声明一个空元组 一、 初识散列类型(无序序列) 数据类型分为3种: python的序列类型有好几种,之前的博文讲到了两种类型 1.数值类型…

Appium中的api(一)

目录 1.基础python代码准备 1--参数的一些说明 2--python内所要编写的代码 解释 2.如何获取包名和界面名 1-api 2-完整代码 代码解释 3.如何关闭驱动连接 4.安装卸载app 1--卸载 2--安装 5.判断app是否安装 6.将应用放到后台在切换为前台的时间 7.UIAutomatorViewer的使用 1--找…

Oracle CONNECT BY、PRIOR和START WITH关键字详解

Oracle CONNECT BY、PRIOR和START WITH关键字详解 1. 基本概念2. 数据示例3. SQL示例3.1. 查询所有员工及其上级3.2. 显示层次结构3.3. 查询特定员工的子级 4. 结论 在Oracle数据库中,CONNECT BY、PRIOR和START WITH关键字主要用于处理层次结构数据,例如…