路径跟踪之导航向量场——二维导航向量场

今天带来一期轨迹跟踪算法的讲解,首先讲解二维平面中的导航向量场[1]。该方法具有轻量化、计算简便、收敛性强等多项优点。该方法根据期望的轨迹函数,计算全局位置的期望飞行向量,将期望飞行向量转为偏光角,输入底层控制器,即可导引被控对象不断跟踪至期望轨迹。该方法适用于非全约束的移动机器人,如固定翼无人机、独轮车、小车(非全向麦克纳姆轮式)、船舶等。对于全约束的移动机器人,如四旋翼无人机、麦克纳姆轮式小车,仅控制前进方向和偏航方向,也是同样可以使用的。

在本期文章中,主要讲解向量场计算方式和使用,机器人根据向量场给出的方向最终会收敛至期望轨迹的相关证明过程可以参考原始论文。

轨迹表达式

考虑以(0,0)为圆心, r = 10 r=10 r=10为半径的期望圆轨迹,有如下轨迹方程:
x 2 + y 2 = 100 x^2+y^2=100 x2+y2=100
对上式等式两边开平方,移到一边,得到如下函数 φ ( x , y ) \varphi(x,y) φ(x,y)
φ ( x , y ) = x 2 + y 2 − 10 \varphi(x,y)=\sqrt{x^2+y^2}-10 φ(x,y)=x2+y2 10
如下图所示,当 φ = c = c o n s t \varphi=c=const φ=c=const时,期望轨迹为一个水平集。设无人机位置坐标为 r ⃗ = ( r x , r y ) \vec{r}=(r_x,\ r_y) r =(rx, ry),当 φ ( r ⃗ ) = 0 \varphi(\vec r)=0 φ(r )=0时,无人机坐标落在期望轨迹水平集上;当 φ ( r ⃗ ) > 0 \varphi(\vec r)>0 φ(r )>0,轨迹在期望轨迹水平集之上;当 φ ( r ⃗ ) < 0 \varphi(\vec r)<0 φ(r )<0,轨迹在期望轨迹水平集之下。因此 φ ( r ⃗ ) \varphi(\vec r) φ(r )的值可以被看作是无人机位置与期望轨迹之间的距离

通常,我们可以在此基础上定义跟踪误差
e = ψ [ φ ( r ⃗ ) ] e=\psi[\varphi(\vec r)] e=ψ[φ(r )]
ψ \psi ψ一阶连续单调递增函数 ψ ( 0 ) = 0 \psi(0)=0 ψ(0)=0 ∀ z ≠ 0 , ψ ( z ) z > 0 \forall z\neq0,\ \psi(z)z>0 z=0, ψ(z)z>0
函数 ψ \psi ψ可以看作为算法的参数,通过选取 ψ \psi ψ ϕ \phi ϕ自由组合,来定义跟踪误差,从而区分轨迹函数 φ ( r ⃗ ) \varphi(\vec r) φ(r ) e e e

导航向量场

下面给出导航向量场的形式
v ⃗ ( r ⃗ ) = τ ⃗ ( r ⃗ ) − k n e ( r ⃗ ) n ⃗ ( r ⃗ ) \vec v(\vec r)=\vec{\tau}(\vec r)-k_ne(\vec r)\vec n(\vec r) v (r )=τ (r )kne(r )n (r )
式中, n ⃗ ( r ⃗ ) \vec n(\vec r) n (r )梯度方向
n ⃗ ( r ⃗ ) = ( ∂ φ ∂ x , ∂ φ ∂ y ) = ( x x 2 + y 2 , y x 2 + y 2 ) \begin{aligned} \vec n(\vec r) &= (\frac{\partial \varphi}{\partial x},\frac{\partial \varphi}{\partial y}) \\ &=(\frac{x}{\sqrt{x^2+y^2}},\frac{y}{\sqrt{x^2+y^2}})\\ \end{aligned} n (r )=(xφ,yφ)=(x2+y2 x,x2+y2 y)
τ ⃗ ( r ⃗ ) \vec{\tau}(\vec r) τ (r )为与 n ⃗ ( r ⃗ ) \vec n(\vec r) n (r )垂直的方向, E E E旋转矩阵 E c w E_{cw} Ecw为顺时针旋转矩阵, E c c w E_{ccw} Eccw为逆时针旋转矩阵
{ τ ⃗ ( r ⃗ ) = E n ⃗ ( r ⃗ ) E c w = [ 0 1 − 1 0 ] E c c w = [ 0 − 1 1 0 ] \begin{cases} \begin{aligned} \vec{\tau}(\vec r)&= E\ \vec{n}(\vec r)\\ E_{cw}&= \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}\\ E_{ccw}&= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \end{aligned} \end{cases} τ (r )EcwEccw=E n (r )=[0110]=[0110]
e ( r ⃗ ) e(\vec r) e(r )为误差,这里为了方便起见,令
e ( r ⃗ ) = φ ( r ⃗ ) = x 2 + y 2 − 10 e(\vec r)=\varphi(\vec r)=\sqrt{x^2+y^2}-10 e(r )=φ(r )=x2+y2 10
k n k_n kn为增益,我们暂且令 k n = 1 k_n = 1 kn=1

v ⃗ ( r ⃗ ) = τ ⃗ ( r ⃗ ) − k n e ( r ⃗ ) n ⃗ ( r ⃗ ) \vec v(\vec r)=\vec{\tau}(\vec r)-k_ne(\vec r)\vec n(\vec r) v (r )=τ (r )kne(r )n (r )中, τ ⃗ ( r ⃗ ) \vec{\tau}(\vec r) τ (r )为传播项, − k n e ( r ⃗ ) n ⃗ ( r ⃗ ) -k_ne(\vec r)\vec n(\vec r) kne(r )n (r )为收敛项。 ∣ − k n e ( r ⃗ ) n ⃗ ( r ⃗ ) ∣ |-k_ne(\vec r)\vec n(\vec r)| kne(r )n (r )项越大,产生的向期望轨迹方向的分量越大。 τ ⃗ ( r ⃗ ) \vec{\tau}(\vec r) τ (r )决定了跟踪期望轨迹的方向。

最终将 v ⃗ ( r ⃗ ) \vec v(\vec r) v (r )进行归一化操作

m ⃗ = v ⃗ ∣ ∣ v ⃗ ∣ ∣ \vec m = \frac{\vec v}{||\vec v||} m =∣∣v ∣∣v

∣ ∣ v ⃗ ∣ ∣ ||\vec v|| ∣∣v ∣∣为欧几里得范数(L2范数), m ⃗ \vec m m 即为导航向量场给出的期望飞行方向向量。

向量场结果

我们令增益 k n = 0.2 k_n = 0.2 kn=0.2 k n = 1 k_n = 1 kn=1 k n = 2 k_n = 2 kn=2 k n = 4 k_n = 4 kn=4,跟踪方向为顺时针方向,旋转矩阵为 E = [ 0 , 1 ; − 1 , 0 ] E=[0,1;-1,0] E=[0,1;1,0],绘制出向量场结果图像,可得

令旋转矩阵为逆时针方向,旋转矩阵为 E = [ 0 , − 1 ; 1 , 0 ] E=[0,-1;1,0] E=[0,1;1,0],可得

根据四个不同增益下的导航向量场结果,不难发现, ∣ − k n e ( r ⃗ ) n ⃗ ( r ⃗ ) ∣ |-k_ne(\vec r)\vec n(\vec r)| kne(r )n (r )越大,导航向量场方向往期望轨迹方向偏转越大。在距离期望轨迹较近的情况下,过大的偏转方向可能会产生震荡,但是距离较远的情况下有助于快速收敛至期望轨迹。

向量场使用

根据上面的讲解,对于任意给定的期望轨迹函数式,在全局任何位置,都可以计算得出一个期望飞行向量,将向量做反正切计算,得到期望的飞行航向角。将这个期望航向角,输入至底层控制器,即可导引无人机(或其他类型机器人)飞行收敛至期望轨迹。对于固定翼无人机,不建议直接使用航向角误差作为姿态控制器的偏航输入,建议将航向角误差对滚转做映射函数处理,作为姿态控制器的滚转输入,会有更好的效果。

总结

本期文章介绍了二维导航向量场,其简洁优雅的形式,在很多方面有着比较广泛的适用性,可以自行构建轨迹函数,来实现例如目标追踪、避障、对峙跟踪等功能。

在此留下一个思考题,如有兴趣,请尝试推导出直线 x = 5 x=5 x=5和椭圆轨迹 x 2 9 + y 2 4 \frac{x^2}{9}+\frac{y^2}{4} 9x2+4y2=1的导航向量场形式,尝试绘制导航向量场结果。如果推导出结果,可以尽快与我私信,有精美礼品和源码答疑。数量有限(5个名额),先到先得。

参考文献及链接

[1]KAPITANYUK, Yuri A.; PROSKURNIKOV, Anton V.; CAO, Ming. A guiding vector-field algorithm for path-following control of nonholonomic mobile robots. IEEE Transactions on Control Systems Technology, 2017, 26.4: 1372-1385.

END

迅翼SwiftWing致力于固定翼技术共享,汇聚固定翼领域技术极客,推动固定翼技术持续创新!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/881438.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

prometheus client_java实现进程的CPU、内存、IO、流量的可观测

文章目录 1、获取进程信息的方法1.1、通过读取/proc目录获取进程相关信息1.2、通过Linux命令获取进程信息1.2.1、top&#xff08;CPU/内存&#xff09;命令1.2.2、iotop&#xff08;磁盘IO&#xff09;命令1.2.3、nethogs&#xff08;流量&#xff09;命令 2、使用prometheus c…

AAA Mysql与redis的主从复制原理

一 &#xff1a;Mysql主从复制 重要的两个日志文件&#xff1a;bin log 和 relay log bin log&#xff1a;二进制日志&#xff08;binnary log&#xff09;以事件形式记录了对MySQL数据库执行更改的所有操作。 relay log&#xff1a;用来保存从节点I/O线程接受的bin log日志…

用凡尔码系统进行隐患排查二维码的制作

隐患排查是企业安全管理的重要环节&#xff0c;通过定期或不定期地对生产设备、作业场所、作业人员等进行检查&#xff0c;发现并消除安全隐患&#xff0c;预防事故的发生。隐患排查的效率和质量直接影响到企业的安全生产水平和经济效益。 传统的隐患排查方法主要依靠纸质进行…

PostgreSQL学习笔记七:常规SQL操作

PostgreSQL 支持标准的 SQL 语句&#xff0c;同时也扩展了一些特有的功能。以下是一些常规的 SQL 语句示例&#xff0c;这些示例涵盖了数据定义、数据操作和数据查询的基本操作&#xff1a; 数据定义语言 (DDL 创建数据库&#xff1a; CREATE DATABASE mydatabase;创建表&#…

Vue/组件的生命周期

这篇文章借鉴了coderwhy大佬的Vue生命周期 在Vue实例化或者创建组件的过程中 内部涉及到一系列复杂的阶段 每一个阶段的前后时机都可能对应一个钩子函数 以下是我根据coderwhy大佬文章对于每一个阶段的一些看法 1.过程一 首先实例化Vue或者组件 在实例化之前 会对应一个钩子函…

安装最新 MySQL 8.0 数据库(教学用)

安装 MySQL 8.0 数据库&#xff08;教学用&#xff09; 文章目录 安装 MySQL 8.0 数据库&#xff08;教学用&#xff09;前言MySQL历史一、第一步二、下载三、安装四、使用五、语法总结 前言 根据 DB-Engines 网站的数据库流行度排名&#xff08;2024年&#xff09;&#xff0…

使用 Go 语言与 Redis 构建高效缓存与消息队列系统

什么是 Redis&#xff1f; Redis 是一个开源的内存数据库&#xff0c;支持多种数据结构&#xff0c;包括字符串、列表、集合、哈希和有序集合。由于 Redis 运行在内存中&#xff0c;读写速度极快&#xff0c;常被用于构建缓存系统、实时排行榜、会话存储和消息队列等高并发场景…

【浏览器】如何正确使用Microsoft Edge

1、清理主页广告 如今的Microsoft Edge 浏览器 主页太乱了&#xff0c;各种广告推送&#xff0c;点右上角⚙️设置&#xff0c;把快速链接、网站导航、信息提要、背景等全部关闭。这样你就能得到一个超级清爽的主页。 网站导航       关闭 …

十款文件防泄密软件推荐,保护您的重要信息

信息安全是现代社会不可忽视的重要话题&#xff0c;尤其是在工作和生活中接触到大量敏感数据时。选择合适的文件防泄密软件&#xff0c;可以有效防止信息泄露。以下是我们为您推荐的十款优秀软件。 Ping32 以高效的文件加密功能而闻名&#xff0c;Ping32 可以轻松保护您的文件&…

【JavaEE】——回显服务器的实现

阿华代码&#xff0c;不是逆风&#xff0c;就是我疯 你们的点赞收藏是我前进最大的动力&#xff01;&#xff01; 希望本文内容能够帮助到你&#xff01;&#xff01; 目录 一&#xff1a;引入 1&#xff1a;基本概念 二&#xff1a;UDP socket API使用 1&#xff1a;socke…

笔记||VUE3

侦听器 | Vue.js (vuejs.org) 模板引用 | Vue.js (vuejs.org)

R语言绘制散点图

散点图是一种在直角坐标系中用数据点直观呈现两个变量之间关系、可检测异常值并探索数据分布的可视化图表。它是一种常用的数据可视化工具&#xff0c;我们通过不同的参数调整和包的使用&#xff0c;可以创建出满足各种需求的散点图。 常用绘制散点图的函数有plot()函数和ggpl…

SpringCloud学习记录|day4

学习材料 2024最新SpringCloud微服务开发与实战&#xff0c;java黑马商城项目微服务实战开发&#xff08;涵盖MybatisPlus、Docker、MQ、ES、Redis高级等&#xff09; 网关 微服务下&#xff0c;好多不同地址和端口&#xff0c;而前端只知道8080&#xff0c;这怎么解决&…

《Programming from the Ground Up》阅读笔记:p217-p238

《Programming from the Ground Up》学习第11天&#xff0c;p217-p238总结&#xff0c;总计22页。 一、技术总结 1.C compiling p216, C compiling is split into two stages - the preprocessor and the main compiler。 注&#xff1a;感觉这个写法不好&#xff0c;因为p…

Java实体对象转换利器MapStruct详解

概述 现在的JAVA项目多数采用分层结构&#xff0c;参考《阿里巴巴JAVA开发手册》。 分层之后&#xff0c;每一层都有自己的领域模型&#xff0c;即不同类型的 Bean&#xff1a;  DO &#xff08; Data Object &#xff09; &#xff1a;与数据库表结构一一对应&#xff0c;…

acwing:1576. 再次树遍历

打卡一道有意义的题。 题签&#xff1a; 通过使用栈可以以非递归方式实现二叉树的中序遍历。 例如&#xff0c;假设遍历一个如下图所示的 66 节点的二叉树&#xff08;节点编号从 11 到 66&#xff09;。 则堆栈操作为&#xff1a;push(1); push(2); push(3); pop(); pop(); pu…

【HTML】defer 和 async 属性在 script 标签中分别有什么作用?

需要这两个属性的原因&#xff1f; 首先我们要知道的是&#xff0c;浏览器在解析 HTML 的过程中&#xff0c;遇到了 script 元素是不能继续构建 DOM 树的。 它会停止解析构建&#xff0c;首先去下载 js 代码&#xff0c;并且执行 js 的脚本&#xff1b;只有在等到 js 脚本执行…

AI训练 | 如何控制单篇文章不传给AI训练

随着生成式AI技术的普及&#xff0c;越来越多的企业开始使用AI工具来提升效率&#xff0c;但与此同时&#xff0c;关于AI训练的争议也越来越多。比如&#xff0c;2个月前字节跳动和WPS因为内容因为AI训练&#xff0c;引发了创作者的广泛讨论。这种对未经许可内容被“喂养”AI模…

draw.io创建自定义形状

Create custom shapes in draw.io using the text editor Reference draw怎么创建和编辑复杂的自定义形状 https://blog.csdn.net/u012028275/article/details/113828875 Create custom shapes in draw.io using the text editor

LeetCode讲解篇之377. 组合总和 Ⅳ

文章目录 题目描述题解思路题解代码题目链接 题目描述 题解思路 总和为target的元素组合个数 可以由 总和为target - nums[j]的元素组合个数 转换而来&#xff0c;其中j为nums所有元素的下标 而总和target - nums[j]的元素组合个数 可以由 总和为target - nums[j] - nums[k]的…