【架构】efk日志监控

文章目录

      • 一、EFK组件及其功能
      • 二、EFK日志监控的工作流程
      • 三、EFK日志监控的优势
      • 四、EFK日志监控的应用场景
    • 推荐阅读

EFK日志监控是一种高效的日志管理解决方案,由Elasticsearch、Fluentd(或Logstash)和Kibana三个开源工具组成。以下是对EFK日志监控的详细解析:

一、EFK组件及其功能

  1. Elasticsearch

    • 功能:Elasticsearch是一个基于Lucene的分布式搜索和分析引擎,专门用于高效地存储、搜索和分析大规模的数据。在EFK日志监控中,Elasticsearch负责存储从Fluentd或Logstash收集的日志数据,并提供强大的全文搜索和复杂的数据分析功能。
    • 特点:Elasticsearch具有分布式特性,能够轻松处理大规模数据,并提供高可用性和容错性。
  2. Fluentd(或Logstash

    • 功能:Fluentd是一个开源的日志收集和路由工具,而Logstash则是一个功能类似的工具。它们都可以从各种数据源(如应用程序、服务器、容器等)收集日志数据,并进行必要的过滤和转换。在EFK中,Fluentd或Logstash作为日志收集器,将收集到的日志数据发送到Elasticsearch进行存储和分析。
    • 特点:Fluentd相较于Logstash在效能上表现更优,且更适合于容器化环境。它采用了插件式的架构,具有高可扩展性和高可用性。
  3. Kibana

    • 功能:Kibana是一个用于数据可视化的工具,提供了一个直观的用户界面,允许用户通过图表、仪表盘和报表来展示和分析存储在Elasticsearch中的日志数据。在EFK日志监控中,Kibana是用户与日志数据交互的窗口,用户可以通过Kibana查询、过滤和可视化日志数据。
    • 特点:Kibana支持用户自定义查询和过滤,能够将复杂的日志数据转化为直观的图表和报表,便于用户理解和传达数据的含义。

二、EFK日志监控的工作流程

  1. 日志收集:Fluentd或Logstash从各种数据源(如应用程序、服务器、容器等)收集日志数据,并进行必要的过滤和转换。这些日志数据可能来自于不同的系统、应用程序或服务,Fluentd或Logstash能够统一处理这些数据,确保日志的完整性和一致性。
  2. 数据存储:经过过滤和转换的日志数据被发送到Elasticsearch进行存储和索引。Elasticsearch提供了丰富的索引策略和查询优化算法,能够快速响应用户的查询请求,并提供高效的日志检索功能。
  3. 数据查询与可视化:用户通过Kibana与Elasticsearch进行交互,查询、过滤和可视化存储在Elasticsearch中的日志数据。Kibana提供了丰富的可视化选项和灵活的查询语言,允许用户根据自己的需求定制查询和报表。

三、EFK日志监控的优势

  1. 灵活性和可扩展性:EFK堆栈提供了灵活的配置选项和可扩展的架构,支持从各种数据源收集日志数据,并将其发送到Elasticsearch进行存储和分析。随着业务规模的扩大和数据量的增加,EFK可以轻松地扩展以满足需求。
  2. 强大的搜索和过滤功能:Elasticsearch提供了强大的全文搜索能力和复杂的数据分析功能,使用户能够快速定位特定的日志事件或关键字。这有助于开发人员和运维团队快速发现和解决问题。
  3. 直观的数据可视化:Kibana提供了直观的用户界面和丰富的可视化选项,能够将复杂的日志数据转化为易于理解的图表和报表。这有助于用户更好地理解和传达数据的含义,提高数据分析和决策的效率。
  4. 支持容器化环境:Fluentd特别适合于容器化环境,能够高效地收集和处理容器中的日志数据。这使得EFK成为容器化应用和微服务架构中日志监控的首选解决方案。

四、EFK日志监控的应用场景

EFK日志监控广泛应用于各种需要高效管理和分析日志数据的场景,包括但不限于:

  • 云计算平台:在云计算平台上,EFK可以帮助开发人员和运维团队更好地监控和管理应用程序的日志数据,确保系统的稳定性和可靠性。
  • 大数据分析:EFK可以作为大数据分析的一部分,为数据科学家提供丰富的日志数据支持,助力数据分析和挖掘工作。
  • 运维监控:在运维监控领域,EFK可以帮助运维人员快速发现和解决潜在的问题和异常,提高运维效率和系统稳定性。

综上所述,EFK日志监控是一种强大的日志管理工具组合,通过Elasticsearch、Fluentd(或Logstash)和Kibana的协同工作,为开发人员和运维团队提供了高效、灵活和可扩展的日志数据采集、存储、搜索和可视化展示的解决方案。

推荐阅读

【Elastic Stack】Elasticsearch、Logstash、Kiana、Beats

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/881046.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[linux 驱动]input输入子系统详解与实战

目录 1 描述 2 结构体 2.1 input_class 2.2 input_dev 2.4 input_event 2.4 input_dev_type 3 input接口 3.1 input_allocate_device 3.2 input_free_device 3.3 input_register_device 3.4 input_unregister_device 3.5 input_event 3.6 input_sync 3.7 input_se…

昇思MindSpore进阶教程--雅可比矩阵

大家好,我是刘明,明志科技创始人,华为昇思MindSpore布道师。 技术上主攻前端开发、鸿蒙开发和AI算法研究。 努力为大家带来持续的技术分享,如果你也喜欢我的文章,就点个关注吧 雅可比矩阵 雅可比矩阵的应用&#xff1…

Python知识点:如何使用Multiprocessing进行并行任务管理

开篇,先说一个好消息,截止到2025年1月1日前,翻到文末找到我,赠送定制版的开题报告和任务书,先到先得!过期不候! 如何在Python中使用Multiprocessing进行并行任务管理 在现代编程中,…

排序算法剖析

文章目录 排序算法浅谈参考资料评价指标可视化工具概览 插入排序折半插入排序希尔排序冒泡排序快速排序简单选择排序堆排序归并排序基数排序 排序算法浅谈 参考资料 数据结构与算法 评价指标 稳定性:两个相同的关键字排序过后相对位置不发生变化时间复杂度空间复…

C# Blazor Server 调用海康H5Player播放摄像头画面

目标 调用海康综合安防平台api,通过摄像头的cameraIndexCode调用【获取监控点预览取流URLv2】api,得到websocket 的url,然后在blazor server中使用htplayer.js播放摄像头实时画面。 步骤 根据摄像头名字,调用【查询监控点列表v2…

python配置环境变量

方法一:首先卸载重新安装,在安装时勾选增加环境变量 方法二:我的电脑-属性-高级系统配置 手动添加环境变量,路径为python的安装路径 检查:查看环境变量是否安装成功 安装第三方lib winr,输入cmd pip ins…

线程互斥函数的例子

代码 #include<stdio.h> #include<pthread.h> #include<sched.h> void *producter_f(void *arg); void *consumer_f(void *arg); int buffer_has_item0; pthread_mutex_t mutex; int running1; int main(void) {pthread_t consumer_t;pthread_t producter_t…

Xcode16适配

1.问题&#xff0c;第三方库报错信息如下&#xff1a; Declaration of sa_family_t must be imported from module Darwin.POSIX.sys.types._sa_family_t before it is required2.解答&#xff0c;在报错文件中导入以下头文件 #import <sys/_types/_sa_family_t.h>如有…

Linux学习笔记(六):服务管理,监控,RPM包管理,yum包管理工具,Linux启动管理,网络管理

Linux学习笔记&#xff08;六&#xff09;&#xff1a;服务管理&#xff0c;监控&#xff0c;RPM包管理&#xff0c;yum包管理工具&#xff0c;Linux启动管理&#xff0c;网络管理 1. 服务管理 1.1 service 启动/停止服务 service 命令是最常用的服务管理工具之一&#xff0c…

音视频入门基础:FLV专题(7)——Tag header简介

一、引言 从《音视频入门基础&#xff1a;FLV专题&#xff08;3&#xff09;——FLV header简介》中可以知道&#xff0c; 在FLV header之后&#xff0c;FLV文件剩下的部分应由PreviousTagSize和Tag组成。FLV文件 FLV header PreviousTagSize0 Tag1 PreviousTagSize1 Ta…

安装Rust

Rust 是一种系统级编程语言&#xff0c;旨在提供高性能和内存安全&#xff0c;同时避免常见的编程错误。 由 Mozilla Research 推出&#xff0c;Rust 自推出以来因其独特的设计理念和强大的功能而在开发者社区中迅速获得了广泛的关注和采用。 curl --proto ‘https’ --tlsv1.2…

07.useDefault

在 React 应用开发中,处理状态的默认值和空值情况是一个常见需求。useDefault 钩子提供了一种优雅的方式来管理状态,同时为空值(null 或 undefined)提供默认回退值。这个自定义钩子不仅简化了状态管理,还提高了代码的可读性和健壮性。以下是如何实现和使用这个自定义钩子:…

Python或R时偏移算法实现

&#x1f3af;要点 计算单变量或多变量时序距离&#xff0c;使用欧几里得、曼哈顿等函数量化不同时序差异。量化生成时序之间接近度相似性矩阵。使用高尔距离和堪培拉距离等相似度测量。实现最小方差匹配算法&#xff0c;绘制步进模式的图形表示。其他语言包算法实现。 &…

【AI知识点】NP 难问题(NP-Hard Problem)

NP 难问题&#xff08;NP-Hard Problem&#xff09; 是计算复杂性理论中的一个重要概念&#xff0c;描述了那些非常难以求解的问题。NP 难问题中的“NP”代表“非确定性多项式时间”&#xff08;Nondeterministic Polynomial time&#xff09;。这些问题的特性使得求解它们的最…

[uni-app]小兔鲜-07订单+支付

订单模块 基本信息渲染 import type { OrderState } from /services/constants import type { AddressItem } from ./address import type { PageParams } from /types/global/** 获取预付订单 返回信息 */ export type OrderPreResult {/** 商品集合 [ 商品信息 ] */goods: …

mysql学习教程,从入门到精通,SQL 表的创建(33)

1、SQL 表的创建 在SQL中&#xff0c;创建表的基本语法是使用CREATE TABLE语句。以下是一个基本的CREATE TABLE语法模板&#xff0c;以及对其各个部分的解释&#xff1a; CREATE TABLE 表名 (列名1 数据类型 [约束条件] [默认值],列名2 数据类型 [约束条件] [默认值],...[表级…

[数据集][目标检测]辣椒缺陷检测数据集VOC+YOLO格式695张5类别

重要说明&#xff1a;数据集图片里面都是一个辣椒&#xff0c;请仔细查看图片预览&#xff0c;确认符合要求下载 数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文…

jenkins 构建报错ERROR: Error fetching remote repo ‘origin‘

问题描述 修改项目的仓库地址后&#xff0c;使用jenkins构建报错 Running as SYSTEM Building in workspace /var/jenkins_home/workspace/【测试】客户端/client-fonchain-main The recommended git tool is: NONE using credential 680a5841-cfa5-4d8a-bb38-977f796c26dd&g…

小白快速上手 Docker 03 | Docker数据卷

数据卷 在前面使用Docker时&#xff0c;可能会遇到以下几个问题&#xff1a; 当Docker 里的容器挂了以后打不开&#xff0c;这时候只有删除该容器了&#xff0c;但删除容器会连容器中的产生的数据也一起删除了&#xff0c;大部分场景下这是不能接受的。Docker容器与容器之间不…

【图论】1 (最小生成树虚拟点思想)C.戴森球计划 题解

一. 题目 题目描述 输入输出格式 样例 样例1 样例2 & 样例解释 数据范围 二. 思路 对于前20%数据 解法 因为保证了 x i 1 x_i 1 xi​1&#xff0c;也就是说这些点都在 x 1 x 1 x1 这条直线上。 那么最优解必定是在 c i c_i ci​ 最小的点上建发电站&#xff0c…