摘录于老师的教学课程~~(*๓´╰╯`๓)~~内含链表、队列、栈、循环队列等详细介绍~~
基础知识系列 有空再继续更~~~
目录
【链表】
一、单链表
1、存储结构:带头结点的单链表
2、单链表结点类型的定义
3、创建单链表
1)头插法
2)尾插法
4、单链表插入结点
5、单链表删除结点编辑
6、单链表的遍历模型
1)模型1:指向头结点
2)模型2:指向首结点
二、双链表
1、存储结构:带头结点的双链表
2、双链表结点类型的定义
3、创建双链表
1)头插法
2)尾插法
4、双链表插入结点
方法1:在第 i 位置插入,先定位到第 i-1 位置编辑
方法2:在第 i 位置插入,定位到第 i 位置
5、双链表删除结点
方法1:删除第 i 位置结点,先定位到第 i-1 位置
方法2:删除第 i 位置结点,定位到第 i 位置编辑
三、循环链表
1、循环单链表
2、循环双链表
3、其他操作方法与单链表和双链表操作一样
【栈】
一、顺序栈
1、存储结构
2、顺序栈类型的定义
3、顺序栈的 四 要素
4、顺序栈的运算(节选)
二、共享栈
1、存储结构
2、共享栈类型的定义
3、共享栈的 四 要素
三、链栈
1、存储结构:带头结点的链栈
2、链栈结点类型的定义
3、链栈的 四 要素
4、链栈的运算(节选)
1)进栈 Push(&s, e)
2)出栈 Pop(&s, &e)
3)取栈顶元素 GetTop(s, &e)
【队列】
一、顺序队
1、存储结构
2、顺序队类型的定义
3、顺序队的 四 要素
4、顺序队的运算(节选)
二、链队
1、存储结构
2、链队结点类型的定义
3、链队的 四 要素
4、链队的运算(节选)
1)进队 enQueue(q , e)
2)出队 deQueue(q , e)
三、变形链队
1、变化要点
2、存储结构
3、变形链队的 四 要素
四、双端队列
1、不受限的双端队列:两端都可以进行进队和出队操作的队列
2、输出受限的双端队列:一端允许进队和出队,另一端只允许进队
3、输入受限的双端队列:一端允许进队和出队,另一端只允许出队
五、环形队列(循环队列)
1、环形队列(循环队列) 四 要素
六、变形环形队列
1、变化要点
2、变形环形队列类型的定义
3、变形环形队列的 四 要素
【链表】
一、单链表
1、存储结构:带头结点的单链表
2、单链表结点类型的定义
typedef struct LNode // 定义单链表节点类型
{ElemType data; // 节点的数据部分,类型为 ElemType(通常是自定义的数据类型)struct LNode *next; // 指向后继结点
}LinkNode; // 将结构体命名为 LinkNode
如图:
3、创建单链表
1)头插法
代码理解:先接s后面,再接s前面
2)尾插法
代码理解:先接s前面,再收s后面
4、单链表插入结点
代码理解:先cv后面(先接s后面),再接s前面
5、单链表删除结点
代码理解:直指后一位,跳过中间
6、单链表的遍历模型
1)模型1:指向头结点
循环初始条件:p 指向链表的头节点 L 。(意味着循环将从头节点开始)
循环结束条件:循环在当前节点的下一个节点不为空时继续执行。(意味着循环会只遍历到倒数第二个节点,并且不会打印最后一个节点的数据)
2)模型2:指向首结点
循环初始条件:p 指向链表的第一个有效节点(即 L ->next ,
意味着循环将从第一个有效节点开始,跳过了头节点)。
循环结束条件:循环在 p 不为空时继续执行。(意味着循环会遍历整个链表,包括最后一个节点)
二、双链表
1、存储结构:带头结点的双链表
2、双链表结点类型的定义
typedef struct DNode //双链表结点类型
{ElemType data;struct DNode *prior; //指向前驱结点struct DNode *next; //指向后继结点
}DlinkNode;
3、创建双链表
1)头插法
代码理解:先接s后面,判断是否后能回扣s,再接s前面,前回扣s
2)尾插法
代码理解:先接s前面,后s回扣前面,最后r(即旧的s,新的r)指空
4、双链表插入结点
方法1:在第 i 位置插入,先定位到第 i-1 位置
代码理解:先s接,后回扣;先接后,再接前
方法2:在第 i 位置插入,定位到第 i 位置
5、双链表删除结点
方法1:删除第 i 位置结点,先定位到第 i-1 位置
代码理解:跳过结点,往下直指下一位,下一位回扣上一位
方法2:删除第 i 位置结点,定位到第 i 位置
三、循环链表
1、循环单链表
2、循环双链表
3、其他操作方法与单链表和双链表操作一样
【栈】
一、顺序栈
1、存储结构
2、顺序栈类型的定义
typedef struct
{ElemType data[MaxSize]; //大小为 MaxSize,用于存储栈中的元素int top; //栈顶指针
}SqStack;
3、顺序栈的 四 要素
代码理解:由于栈从0开始记,所以栈空为-1,栈满为最大(MaxSize)减一;
进栈,先加后进;退栈,先取后减;
4、顺序栈的运算(节选)
要记得判断是否栈满与栈空
二、共享栈
1、存储结构
两头往中间增,空间共享
2、共享栈类型的定义
typedef struct
{ElemType data[MaxSize]; //存放共享栈中元素int top1,top2; //两个栈的栈顶指针
}DStack;
3、共享栈的 四 要素
代码理解:
栈空为两指针至两栈外(-1,MaxSize);
栈满为两指针相邻;
进栈,top1进则先加再进(top1为左),top2进则先减再进(top2为右),都为向中靠拢
出栈,top1出则先取再减(top1为左),top2出则先取再加(top2为右),都为向两边取
三、链栈
1、存储结构:带头结点的链栈
2、链栈结点类型的定义
typedef struct linknode
{ElemType data; //数据域struct linknode *next; //指针域
}LinkStNode;
3、链栈的 四 要素
链栈栈满取决于电脑的内存设置,所以不考虑;
栈空即为头结点s下一位为空;
4、链栈的运算(节选)
1)进栈 Push(&s, e): 要点:链表的头插法插入结点
代码理解:头插-先接后再接前
2)出栈 Pop(&s, &e): 要点:删除链表的首结点
代码理解:跳过删除结点连上,释放节点
3)取栈顶元素 GetTop(s, &e):
代码理解:取栈顶赋值于e
【队列】
一、顺序队
1、存储结构
2、顺序队类型的定义
typedef struct
{ElemtType data[MaxSize];int front,rear; //队首和队尾指针
}SqQueue;
3、顺序队的 四 要素
rear指向队尾元素;front指向队头元素的前一个位置。
代码理解:队空为重合,队满尾最高;进队尾加后入,出队前加后出;
4、顺序队的运算(节选)
1)进队列 enQueue(q,e):在队列不满的条件下,将队尾指针 rear 增 1,然后将元素添加到该位置。
2)出队列 deQueue(q,e):在队列不为空的条件下,将队首指针 front 循环增 1,并将该位置的元素值赋给 e。
二、链队
1、存储结构
一个链队的组成,包含两种类型的结点:
(1)存储队列数据元素的链表结点
(2)存储队头和队尾指针的链队头结点
2、链队结点类型的定义
链队的数据节点类型DataNode
typedef qnode
{ElemType data; //数据元素struct qnode *next;
}DataNode;
链队的头结点类型LinkQuNode
typedef struct
{DataNode *front; //指向单链表队头结点DataNode *rear; //指向单链表队尾结点
}LinkQuNode;
3、链队的 四 要素
代码理解:队空为前后指向空;链队队满取决于内存大小,不考虑;进队尾插法,出队从头删;
4、链队的运算(节选)
1)进队 enQueue(q , e)
代码理解:先判队是否为空,是则既头又尾,否则尾插进入,接前再接尾;
2)出队 deQueue(q , e)
代码理解:删前先判断,为空则回错(return false),t指首结点;为独则设空,前后都指空;为多则好删,跳格接前再存值,最后再释放;
三、变形链队
1、变化要点
使用循环双链表,保留队尾指针rear。(队头指针可通过rear->next得出)
2、存储结构
尾指针rear会回指到队头
3、变形链队的 四 要素
代码理解:队满看内存,不考虑;队空则尾指为空;进队则尾插法;出队则删头;
四、双端队列
1、不受限的双端队列:两端都可以进行进队和出队操作的队列
两端都可进出
2、输出受限的双端队列:一端允许进队和出队,另一端只允许进队
出口唯一,两端可进;后进为两边,先进在中间;
3、输入受限的双端队列:一端允许进队和出队,另一端只允许出队
进口唯一,两端可进;出队结果看两边;
五、环形队列(循环队列)
1、环形队列(循环队列) 四 要素
代码理解:队空为重叠;队满则相邻(尾指针的下一个位置等于头指针的位置,牺牲一个元素);进队从尾进,出队从头出;
涉及环形更新指针解析:
六、变形环形队列
1、变化要点:
取消尾指针,利用队列中元素个数代替队尾指针
2、变形环形队列类型的定义
typedef struct
{ElemType data[MaxSize];int front; //队头指针int count; //队列中元素个数
}QuType;
3、变形环形队列的 四 要素
代码解析:可参照环形队列;多了一个count来作为计数(记空与满),方便很多;