OpenMV与STM32通信全面指南

目录

引言

一、OpenMV和STM32简介

1.1 OpenMV简介

1.2 STM32简介

二、通信协议概述

三、硬件连接

3.1 硬件准备

3.2 引脚连接

四、软件环境搭建

4.1 OpenMV IDE安装

4.2 STM32开发环境

五、UART通信实现

5.1 OpenMV端编程

5.2 STM32端编程

六、SPI通信实现

6.1 OpenMV端配置

6.2 STM32端配置

七、I2C通信实现

7.1 OpenMV端配置

7.2 STM32端配置

八、综合案例:目标跟踪小车

8.1 项目概述

8.2 系统架构

8.3 通信方式选择

8.4 软件流程

8.5 电机控制算法

九、常见问题与解决方案

9.1 数据丢失或乱码

9.2 通信阻塞或死机

9.3 OpenMV无法识别设备

十、未来发展与优化

10.1 提高通信效率

10.2 多设备通信

10.3 深度学习应用

十一、结论

参考文献

附录:通信方式特性比较表


引言

在嵌入式系统和物联网(IoT)领域,图像处理和计算机视觉的需求日益增长。OpenMV作为一种开源的微型视觉模块,因其小巧的体积和强大的功能,受到了广泛关注。STM32系列微控制器则以其高性能和丰富的外设成为嵌入式开发的首选之一。将OpenMV与STM32结合,可以构建功能强大且高效的智能系统。本文将深入探讨OpenMV与STM32的通信方法,旨在为开发者提供详尽的指导和实践参考。


一、OpenMV和STM32简介

1.1 OpenMV简介

OpenMV是一款开源的微型机器视觉模块,基于ARM Cortex-M7微控制器,运行MicroPython脚本。它支持多种图像处理功能,如颜色识别、形状检测、条形码识别等,适用于教育、快速原型开发和小型嵌入式视觉应用。

OpenMV的主要特点:

  • 易于编程: 使用MicroPython,降低了开发门槛。
  • 小巧便携: 模块尺寸小,适合嵌入式应用。
  • 丰富的功能: 支持多种图像处理算法。
  • 多种接口: 提供UART、SPI、I2C、USB等通信接口。

1.2 STM32简介

STM32是STMicroelectronics公司推出的基于ARM Cortex内核的32位微控制器系列。STM32具有高性能、低功耗和丰富的外设接口,被广泛应用于工业控制、消费电子、物联网等领域。

STM32的主要特点:

  • 高性能: 最高主频可达480MHz,满足复杂运算需求。
  • 丰富的外设: 提供UART、SPI、I2C、ADC、DAC等多种外设。
  • 低功耗: 多种省电模式,适用于电池供电的应用。
  • 广泛的生态: 丰富的开发板、工具和社区支持。

二、通信协议概述

在OpenMV与STM32之间建立通信,需要选择合适的通信协议。常用的通信方式包括UART、SPI、I2C等。下面通过表格对比这些协议的特点:

通信协议速度通信方式线数适用场景
UART中等全双工/半双工2数据量适中,长距离通信
SPI高速全双工4高速数据传输,短距离
I2C较低半双工2低速传感器数据采集

选择通信协议的考虑因素:

  • 数据传输速率: 根据应用需求选择合适的速度。
  • 硬件资源: 考虑引脚数量和外设占用情况。
  • 通信距离: UART适合长距离,SPI和I2C适合短距离。
  • 复杂度: UART简单易用,SPI和I2C需要更多的配置。

三、硬件连接

3.1 硬件准备

  • OpenMV模块: 例如OpenMV Cam H7。
  • STM32开发板: 如STM32F4、STM32F7或STM32H7系列。
  • 连接线: 杜邦线或其他合适的连接方式。

3.2 引脚连接

以UART通信为例,连接方式如下:

OpenMV引脚STM32引脚功能
P4 (TX)USART_RX数据接收
P5 (RX)USART_TX数据发送
GNDGND
VIN或3.3V3.3V电源

注意事项:

  • 电平匹配: 确保两者的工作电压一致,通常都是3.3V。
  • 引脚对应: OpenMV的TX连接到STM32的RX,反之亦然。
  • 共地: 两个设备必须连接共同的地线。

四、软件环境搭建

4.1 OpenMV IDE安装

OpenMV IDE是用于编写和调试OpenMV脚本的集成开发环境。

安装步骤:

  1. 前往OpenMV官网 openmv.io 下载适用于操作系统的IDE安装包。
  2. 按照提示完成安装。
  3. 连接OpenMV模块,确保驱动程序正确安装。

4.2 STM32开发环境

STM32的开发通常使用以下工具:

  • IDE: Keil MDK、STM32CubeIDE或IAR Embedded Workbench。
  • 固件库: STM32CubeMX生成的HAL库或LL库。
  • 串口调试工具: 如SecureCRT、PuTTY等。

五、UART通信实现

5.1 OpenMV端编程

示例代码:

 
# OpenMV UART通信示例import sensor, image, time
from pyb import UART# 初始化摄像头
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.skip_frames(time = 2000)# 初始化UART
uart = UART(3, 115200)  # 使用UART3,波特率115200clock = time.clock()while(True):clock.tick()img = sensor.snapshot()# 进行简单的颜色跟踪blobs = img.find_blobs([(30, 100, 15, 127, 15, 127)])if blobs:# 如果找到目标颜色for blob in blobs:# 计算质心x_center = blob.cx()y_center = blob.cy()# 打包数据data = bytearray([0x2C, x_center, y_center, 0x5B])uart.write(data)# 在图像上画出矩形和质心img.draw_rectangle(blob.rect())img.draw_cross(blob.cx(), blob.cy())

代码解析:

  • 摄像头初始化: 设置像素格式和分辨率。
  • UART初始化: 使用UART3,波特率设置为115200。
  • 图像处理: 使用find_blobs进行颜色识别。
  • 数据发送: 将目标的质心坐标通过UART发送,数据包以0x2C0x5B为起始和结束标志。

5.2 STM32端编程

步骤:

  1. USART配置: 使用STM32的USART外设,波特率设置为115200,数据位8位,无奇偶校验,1个停止位。
  2. 接收数据: 配置中断或DMA方式接收UART数据。
  3. 数据解析: 根据OpenMV发送的数据格式解析质心坐标。

示例代码:

 
// STM32 UART接收示例(以HAL库为例)#include "main.h"
#include <string.h>UART_HandleTypeDef huart1;
uint8_t rxBuffer[4];  // 接收缓冲区void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART1_UART_Init(void);int main(void)
{HAL_Init();SystemClock_Config();MX_GPIO_Init();MX_USART1_UART_Init();while (1){// 等待接收4字节数据if (HAL_UART_Receive(&huart1, rxBuffer, 4, HAL_MAX_DELAY) == HAL_OK){// 检查数据包头尾if (rxBuffer[0] == 0x2C && rxBuffer[3] == 0x5B){uint8_t x = rxBuffer[1];uint8_t y = rxBuffer[2];// 在此处处理接收到的坐标数据}}}
}// USART1初始化
static void MX_USART1_UART_Init(void)
{huart1.Instance = USART1;huart1.Init.BaudRate = 115200;huart1.Init.WordLength = UART_WORDLENGTH_8B;huart1.Init.StopBits = UART_STOPBITS_1;huart1.Init.Parity = UART_PARITY_NONE;huart1.Init.Mode = UART_MODE_RX;huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;HAL_UART_Init(&huart1);
}

代码解析:

  • UART配置: 设置波特率和数据格式,与OpenMV端一致。
  • 数据接收: 使用阻塞方式接收4字节数据。
  • 数据解析: 检查数据包的起始和结束标志,提取坐标信息。

六、SPI通信实现

6.1 OpenMV端配置

OpenMV支持SPI通信,可以作为SPI主机或从机。以下示例配置为SPI从机:

 
# OpenMV SPI从机通信示例from pyb import SPI
import time# 初始化SPI
spi = SPI(2, SPI.SLAVE, polarity=0, phase=0)while True:# 接收数据recv = spi.recv(4, timeout=5000)if recv:# 处理接收到的数据print("Received:", recv)time.sleep_ms(10)

6.2 STM32端配置

STM32作为SPI主机,发送指令给OpenMV:

 
// STM32 SPI主机发送示例#include "main.h"SPI_HandleTypeDef hspi1;
uint8_t txBuffer[4] = {0x01, 0x02, 0x03, 0x04};void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);int main(void)
{HAL_Init();SystemClock_Config();MX_GPIO_Init();MX_SPI1_Init();while (1){// 发送数据HAL_SPI_Transmit(&hspi1, txBuffer, 4, HAL_MAX_DELAY);HAL_Delay(1000);}
}// SPI1初始化
static void MX_SPI1_Init(void)
{hspi1.Instance = SPI1;hspi1.Init.Mode = SPI_MODE_MASTER;hspi1.Init.Direction = SPI_DIRECTION_2LINES;hspi1.Init.DataSize = SPI_DATASIZE_8BIT;hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;hspi1.Init.NSS = SPI_NSS_SOFT;HAL_SPI_Init(&hspi1);
}


七、I2C通信实现

7.1 OpenMV端配置

OpenMV作为I2C从机设备:

 
# OpenMV I2C从机通信示例from pyb import I2C# 初始化I2C,从机地址为0x12
i2c = I2C(2, I2C.SLAVE, addr=0x12)while True:if i2c.is_ready(0x12):recv = i2c.recv(4)print("Received:", recv)

7.2 STM32端配置

STM32作为I2C主机,读取OpenMV的数据:

 
// STM32 I2C主机读取示例#include "main.h"I2C_HandleTypeDef hi2c1;
uint8_t rxBuffer[4];void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_I2C1_Init(void);int main(void)
{HAL_Init();SystemClock_Config();MX_GPIO_Init();MX_I2C1_Init();while (1){// 从地址0x12读取4字节数据HAL_I2C_Master_Receive(&hi2c1, 0x12 << 1, rxBuffer, 4, HAL_MAX_DELAY);// 处理接收到的数据HAL_Delay(1000);}
}// I2C1初始化
static void MX_I2C1_Init(void)
{hi2c1.Instance = I2C1;hi2c1.Init.ClockSpeed = 100000;hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;HAL_I2C_Init(&hi2c1);
}


八、综合案例:目标跟踪小车

8.1 项目概述

设计一款能够跟踪特定颜色目标的小车。OpenMV负责识别目标,STM32负责控制电机,实现小车的移动。

8.2 系统架构

  • OpenMV: 实时捕捉图像,识别目标位置,将位置信息发送给STM32。
  • STM32: 接收位置信息,计算控制指令,驱动电机实现跟踪。

8.3 通信方式选择

由于需要实时传输位置信息,UART通信已经能够满足需求,并且实现相对简单。

8.4 软件流程

OpenMV端:

  1. 初始化摄像头和UART。
  2. 进行颜色识别,获取目标坐标。
  3. 通过UART发送坐标数据。

STM32端:

  1. 初始化UART和电机驱动。
  2. 接收坐标数据,计算需要的转向和速度。
  3. 控制电机,实现小车移动。

8.5 电机控制算法

根据目标的位置,调整小车的转向:

  • 目标在视野中央: 小车直行。
  • 目标在左侧: 小车左转。
  • 目标在右侧: 小车右转。

九、常见问题与解决方案

9.1 数据丢失或乱码

可能原因:

  • 波特率不匹配。
  • 数据格式不一致。
  • 硬件连接不良。

解决方案:

  • 确认双方波特率设置一致。
  • 检查数据位、校验位、停止位设置。
  • 检查引脚连接和焊接质量。

9.2 通信阻塞或死机

可能原因:

  • 数据接收缓冲区溢出。
  • 通信中断处理不当。

解决方案:

  • 使用DMA或中断方式接收数据。
  • 增加接收缓冲区大小。
  • 在代码中加入超时和错误处理机制。

9.3 OpenMV无法识别设备

可能原因:

  • 驱动程序未安装。
  • USB线缆损坏。

解决方案:

  • 重新安装OpenMV IDE和驱动程序。
  • 更换USB线缆。

十、未来发展与优化

10.1 提高通信效率

  • 数据压缩: 采用压缩算法,减少传输的数据量。
  • 协议优化: 自定义高效的数据传输协议。

10.2 多设备通信

  • 总线拓扑: 使用I2C或SPI,实现多个OpenMV模块与STM32的通信。
  • 地址管理: 为每个设备分配唯一的地址。

10.3 深度学习应用

  • 模型部署: 在OpenMV上运行轻量级的神经网络模型,提升识别精度。
  • 协同计算: STM32参与部分数据处理,实现更复杂的功能。

十一、结论

通过本文的介绍,我们详细阐述了OpenMV与STM32之间的通信方法,包括UART、SPI和I2C三种主要的通信方式。通过实际的代码示例和案例分析,读者可以掌握如何在实际项目中实现两者的通信。OpenMV强大的图像处理能力与STM32的控制功能相结合,为嵌入式系统开发带来了无限可能。希望本文能为开发者提供有价值的参考,助力更多创新项目的实现。


参考文献

  1. OpenMV官方文档:https://docs.openmv.io/
  2. STM32参考手册和数据手册:https://www.st.com/
  3. 《嵌入式系统原理与实践》,电子工业出版社,2020年版。
  4. 王磊,《UART通信在STM32中的应用》,电子技术应用,2019年第5期。

附录:通信方式特性比较表

特性UARTSPII2C
引脚数量242
通信速度
通信距离
主从模式点对点多主多从多主多从
硬件复杂度
应用场景调试、日志输出高速数据传输传感器数据采集

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/880969.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

查缺补漏----I/O中断处理过程

中断优先级包括响应优先级和处理优先级&#xff0c;响应优先级由硬件线路或查询程序的查询顺序决定&#xff0c;不可动态改变。处理优先级可利用中断屏蔽技术动态调整&#xff0c;以实现多重中断。下面来看他们如何运用在中断处理过程中&#xff1a; 中断控制器位于CPU和外设之…

动态规划最长上升子序列问题讲解和【题解】——最长上升子序列

动态规划最长上升子序列讲解和题解——最长上升子序列 最长上升子序列问题讲解1.概念解析2.举例了解3.示例程序 最长上升子序列题目描述输入格式输出格式输入输出样例输入 #1输出 #1 提示思路解析 最长上升子序列问题讲解 1.概念解析 最长上升子序列 &#xff08; L o n g e s…

微服务sentinel解析部署使用全流程

sentinel源码地址&#xff1a; 介绍 alibaba/Sentinel Wiki GitHub sentinel官方文档&#xff1a; https://sentinelguard.io/zh-cn/docs/introduction.html Sprong Cloud alibaba Sentinel文档【小例子】 : Sentinel alibaba/spring-cloud-alibaba Wiki GitHub 目录 1、…

C# + SQLiteExpert 进行(cipher)加密数据库开发+Costura.Fody 清爽发布

一&#xff1a;让 SQLiteExpert 支持&#xff08;cipher&#xff09;加密数据库 SQLiteExpert 作为SQlite 的管理工具&#xff0c;默认不支持加密数据库的&#xff0c;使其成为支持&#xff08;cipher&#xff09;加密数据库的管理工具&#xff0c;需要添加e_sqlcipher.dll &…

Android-Handle消息传递和线程通信

本文为作者学习笔记&#xff0c;如有误&#xff0c;请各位大佬指点 目录 一、同步异步 二、Java多线程通信 三、Handler是什么 四、Handler相关的类 五、Handler常用方法 1. 发送消息 2. 接收处理消息 3. 切换线程 六、使用Handler 使用Handler更新UI 使用Handler延…

蓝桥杯【物联网】零基础到国奖之路:十八. 扩展模块之光敏和AS312

蓝桥杯【物联网】零基础到国奖之路:十八.扩展模块之光敏和AS312 第一节 硬件解读第二节 CubeMX配置第二节 代码 第一节 硬件解读 光敏和AS312如下图&#xff1a; 光敏电阻接到了扩展模块的5号引脚&#xff0c;5号引脚接了2个电阻&#xff0c;R8和光敏电阻。我们通过ADC读取这…

Python 从入门到实战33(使用MySQL)

我们的目标是&#xff1a;通过这一套资料学习下来&#xff0c;通过熟练掌握python基础&#xff0c;然后结合经典实例、实践相结合&#xff0c;使我们完全掌握python&#xff0c;并做到独立完成项目开发的能力。 上篇文章我们讨论了数据库编程接口操作的相关知识。今天我们将学习…

ASP.NET Zero 多租户介绍

ASP.NET Zero 是一个基于 ASP.NET Core 的应用程序框架&#xff0c;它提供了多租户支持&#xff0c;以下是关于 ASP.NET Zero 多租户的介绍&#xff1a; 一、多租户概念 多租户是一种软件架构模式&#xff0c;允许多个客户&#xff08;租户&#xff09;共享同一套软件应用程序…

探索TOGAF理论的实践应用:企业数字化转型的深度指南

数字化转型的迫切性与路径选择 随着全球化进程和技术革命的加速&#xff0c;企业正面临前所未有的挑战和机遇。数字化转型已成为企业保持竞争力、创新业务模式、优化客户体验的核心手段。然而&#xff0c;企业在实施数字化转型时&#xff0c;往往面临路径不清、技术与业务脱节…

《Linux从小白到高手》理论篇(七):Linux的时间管理运行级别启动过程原理详解

List item 本篇将介绍Linux的时间管理&运行级别相关知识&#xff0c;并将深入介绍Linux的启动过程及原理。 Linux的时间管理 Linux 时钟分为系统时钟&#xff08;System Clock&#xff09;和硬件&#xff08;Real Time Clock&#xff0c;简称 RTC&#xff09;时钟。系统时…

Linux驱动开发(速记版)--设备树插件

第六十八章 设备树插件介绍 Linux 4.4之后引入了动态设备树&#xff0c;其中的设备树插件&#xff08;Device Tree Overlay&#xff09;是一种扩展机制&#xff0c;允许在运行时动态添加、修改或删除设备节点和属性。 设备树插件机制通过DTS&#xff08;设备树源文件&#xff0…

protobuf 讲解

一、序列化概念回顾 二、什么是PB 将结构化数据进行序列化的一种方式 三、PB的特点 语言无关、平台无关&#xff1a;即PB支持Java&#xff0c;C、Python等多种语言。支持多个平台 高效&#xff1a;即比XML更小&#xff0c;更快&#xff0c;更为简单。 扩展性、兼容性好&am…

WPF之UI进阶--控件样式与样式模板及词典

WPF的优势之一就是能够更加容易快捷的对窗体和控件的外面进行改造&#xff0c;换句话说&#xff0c;那就是UI设计个性化更加容易。主要是借助了样式、模板及词典来实现的。那么本篇博文就一一对他们进行介绍。 文章目录 一、样式1: 定义样式2: 使用Setter设置属性关于Property和…

C或C++判断指针是否指向同一块内存

有时需要判断指针是否指同一块内存&#xff0c;例如设计字符串时&#xff1a; &#xff08;1&#xff09;insert函数 &#xff08;2) replace函数 &#xff08;3&#xff09;assign函数 难点是迭代器&#xff0c;判断是否同一个迭代器时&#xff0c;需要你在设计迭代器时加…

Kubernetes-环境篇-01-mac开发环境搭建

1、brew安装 参考知乎文章&#xff1a;https://zhuanlan.zhihu.com/p/111014448 苹果电脑 常规安装脚本&#xff08;推荐 完全体 几分钟安装完成&#xff09; /bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)"苹果电脑 极…

Rstudio:强大的R语言集成开发环境(IDE)

Rstudio 应该是 R 语言使用的标配&#xff0c;尽管 Rstudio 的母公司 Posit 推出了新一代的集成开发环境 Positron&#xff0c;但其还处于开发阶段。作为用户不妨让其成熟后再使用&#xff0c;现阶段还是 Rstudio 更稳定。 如果你在生物信息学或统计学领域工作&#xff0c;R语言…

Python | Leetcode Python题解之第455题分发饼干

题目&#xff1a; 题解&#xff1a; class Solution:def findContentChildren(self, g: List[int], s: List[int]) -> int:g.sort()s.sort()m, n len(g), len(s)i j count 0while i < m and j < n:while j < n and g[i] > s[j]:j 1if j < n:count 1i …

uni-app - - - - -vue3使用i18n配置国际化语言

uni-app - - - - -使用i18n配置国际化语言 1. 安装vue-i18n2. 配置文件2.1 创建如下文件2.2 文件配置2.3 main文件导入i18n 3. 页面内使用3.1 template内直接使用3.2 变量接收使用 1. 安装vue-i18n npm install vue-i18n --save2. 配置文件 2.1 创建如下文件 locales文件夹里…

水泵模块(5V STM32)

目录 一、介绍 二、传感器原理 1.尺寸介绍 2.继电器控制水泵电路原理图 三、程序设计 main.c文件 bump.h文件 bump.c文件 四、实验效果 五、资料获取 项目分享 一、介绍 水泵模块(bump)通常是指用于液体输送系统的组件&#xff0c;它负责将水或其他流体从低处提…

四.网络层(上)

目录 4.1网络层功能概述 4.2 SDN基本概念 4.3 路由算法与路由协议 4.3.1什么是路由协议&#xff1f; 4.3.2什么是路由算法&#xff1f; 4.3.3路由算法分类 (1)静态路由算法 (2)动态路由算法 ①全局性 OSPF协议与链路状态算法 ②分散性 RIP协议与距离向量算法 4.3.…