【数据结构】什么是平衡二叉搜索树(AVL Tree)?

🦄个人主页:修修修也

🎏所属专栏:数据结构

⚙️操作环境:Visual Studio 2022


目录

📌AVL树的概念

📌AVL树的操作

🎏AVL树的插入操作

↩️右单旋

↩️↪️右左双旋

↪️↩️左右双旋

↪️左单旋

🎏AVL树的删除操作

结语


📌AVL树的概念

        我们之前一起学习过二叉搜索树,知道它具有较好的搜索性能, 但是普通的二叉搜索树会有一个问题,那就是它可能会因为输入的值不够随机,也可能因为经过某些插入或删除的操作,导致其失去平衡退化为单支树并导致搜索效率降低的情况, 如下不平衡搜索树:

        可以发现,如果搜索二叉树退化到这样极端的不平衡状态,其搜索效率就会大大降低, 时间复杂度会从O(log_{2}N)退化到O(N).为了解决这种情况,我们将引入AVL树的概念.

        AVL树是一个 “加上了额外平衡条件” 的二叉搜索树。其平衡条件的建立是为了确保整棵树的深度为O(log_{2}N)。直观上的最佳平衡条件是每个节点的左右子树有着相同的高度,但这未免太过严苛,我们很难插入新元素而又保持这样的平衡条件。AVL树于是退而求其次,要求任何节点的左右子树高度相差最多1。这是一个较弱的条件,但仍能够保证“对数深度(logarithmic depth)”平衡状态。

        因此, AVL树是一种二叉搜索树, 其中每一个结点的左子树和右子树的高度差至多等于1。我们将二叉树上结点的左子树深度减去右子树深度的值称为平衡因子BF(Balance Factor), 那么平衡二叉树上所有结点的平衡因子只可能是-1/ 0/ 1.

        


📌AVL树的操作

🎏AVL树的插入操作

        我们知道,对于一颗AVL树而言,新插入的结点是很有可能破坏其平衡结构的,如:

        那么AVL树是如何解决这种情况的呢?下面我将通过模拟一组AVL树结点的插入来讲清楚AVL树是如何维持其平衡特性的.

        下面我们将以这组数据为例,详细剖析一下AVL树维持其平衡的插入过程:

14 9 5 17 11 12 7 19 16 27

        首先我们插入第一个结点14:

        然后我们插入第二个结点9:

        此时AVL树仍然是平衡状态,然后我们插入下一个结点5:

        可以看到,插入结点5之后,AVL树的根节点14就已经不满足平衡搜索二叉树的条件了,即它左子树的高度减去右子树的高度已经大于1,因此我们下面就要运用AVL树对不平衡的第一种处理方式,也就是右单旋:

↩️右单旋

        右单旋处理应用的情况为:

  • 失衡结点平衡因子 = 2
  • 失衡结点左孩子平衡因子 = 1

        右单旋的处理操作步骤为:

  • 将失衡结点左孩子的右子树链接到失衡结点的左孩子的位置
  • 将失衡结点链接到失衡结点左孩子的右孩子位置

        所以我们下面采取右单旋的方式使AVL树重新平衡, 因为失衡结点14的左孩子9并没有右孩子,所以我们可以直接将失衡结点14链接到失衡结点左孩子9的右孩子位置, 右单旋示意图如下:

        经过右单旋操作之后,我们得到的AVL树就又重新满足平衡二叉搜索树了:

        接下来我们继续插入新结点17:

        再继续插入新结点11:

        再继续插入新结点12:

        可以看到,插入结点12之后,AVL树的根节点9就已经不满足平衡搜索二叉树的条件了,即它左子树的高度减去右子树的高度已经成了-2,因此我们下面就要运用AVL树对不平衡的第二种处理方式,也就是右左双旋:

↩️↪️右左双旋

        右左双旋处理应用的情况为:

  • 失衡结点平衡因子 = -2
  • 失衡结点右孩子平衡因子 = 1

        右左双旋的处理操作步骤为:

  • 将失衡结点的右孩子右单旋
  • 再将失衡结点左单旋

        所以我们下面采取右左双旋的方式使AVL树重新平衡, 我们先将失衡结点9的右孩子14进行右单旋, 再将失衡结点9进行左单旋,右左双旋操作示意图如下:

         经过右左双旋操作之后,我们得到的AVL树就又重新满足平衡二叉搜索树了:

        我们继续插入新结点7:

         可以看到,插入结点7之后,AVL树的节点9就已经不满足平衡搜索二叉树的条件了,即它左子树的高度减去右子树的高度已经成了2,因此我们下面就要运用AVL树对不平衡的第三种处理方式,也就是左右双旋:

↪️↩️左右双旋

        左右双旋处理应用的情况为:

  • 失衡结点平衡因子 = 2
  • 失衡结点左孩子平衡因子 = -1

        左右双旋的处理操作步骤为:

  • 将失衡结点的左孩子左单旋
  • 再将失衡结点右单旋

        所以我们下面采取左右双旋的方式使AVL树重新平衡, 我们先将失衡结点9的左孩子5进行左单旋, 再将失衡结点9进行右单旋,左右双旋操作示意图如下:

        经过左右双旋操作之后,我们得到的AVL树就又重新满足平衡二叉搜索树了:

        然后我们继续插入新结点19:

         继续插入新结点16:

        最后插入结点27:

        可以看到,插入结点27之后我们发现AVL树的根节点11和其右孩子14都失衡了.这个时候我们只需要调整距离新插入结点最近的失衡结点即可,调整完这个最近失衡结点之后,其余的祖先失衡结点会自动恢复平衡的。我们下面就要运用AVL树对不平衡的第四种处理方式,也就是左单旋:

↪️左单旋

        左单旋处理应用的情况为:

  • 失衡结点平衡因子 = -2
  • 失衡结点右孩子平衡因子 = -1

        左单旋的处理操作步骤为:

  • 将失衡结点右孩子的左子树链接到失衡结点的右孩子的位置
  • 将失衡结点链接到失衡结点右孩子的左孩子位置

        所以我们下面采取左单旋的方式使AVL树重新平衡, 先将失衡结点14的右孩子17的右子树16链接到失衡结点14的右孩子的位置,再将失衡结点14链接到失衡结点右孩子17的左孩子位置, 左单旋示意图如下:

          经过左单旋操作之后,我们得到的AVL树就完成了所有的插入操作并满足平衡二叉搜索树了:

         在经历了四种旋转操作之后,我们将旋转的方式以及其对应的影响因子的特征总结如下:


🎏AVL树的删除操作

        前面讲了AVL树的插入操作需要保证其不失衡, 对于AVL树的删除操作来说也一样, 同样需要保证其操作后树不失衡, 和插入操作不同的是, 删除操作可能会导致不只一次的失衡, 所以我们不能像插入那样调节最近的失衡结点就行, 在删除时可以参考之前讲过的二叉搜索树的删除操作,但是AVL树在删除之后需要沿着祖先结点一直向上继续查找是否有结点失衡的情况,如果有,就需要进行旋转调整,其旋转规则和插入时我们总结的影响因子特征相同。

        下图附上二叉搜索树的删除逻辑,有兴趣的朋友可以自行研究一下:


结语

希望这篇关于 平衡二叉搜索树(AVL树) 的博客能对大家有所帮助,欢迎大佬们留言或私信与我交流.

学海漫浩浩,我亦苦作舟!关注我,大家一起学习,一起进步!

相关文章推荐

【C++】STL标准模板库容器map

【C++】STL标准模板库容器set

【C++】模拟实现二叉搜索(排序)树

【数据结构】C语言实现链式二叉树(附完整运行代码)

【数据结构】什么是二叉搜索(排序)树?

【C++】模拟实现priority_queue(优先级队列)

【C++】模拟实现queue

【C++】模拟实现stack

【C++】模拟实现list

【C++】模拟实现vector

【C++】标准库类型vector

【C++】模拟实现string类

【C++】标准库类型string

【C++】构建第一个C++类:Date类

【C++】类的六大默认成员函数及其特性(万字详解)

【C++】什么是类与对象?


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/880881.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

平面电磁波(解麦克斯韦方程)

注意无源代表你立方程那个点xyzt处没有源,电场磁场也是这个点的。 j电流面密度,电流除以单位面积,ρ电荷体密度,电荷除以单位体积。 j方程组有16个未知数,每个矢量有三个xyz分量,即三个未知数,…

在idea使用nacos微服务

一.安装nacos 、依赖记得别放<dependencyManagement></dependencyManagement>这个标签去了 1.在linux拉取镜像安装 docker pull nacos/nacos-server:1.3.1 2.创建挂载目录 mkdir -p /usr/local/docker/nacos/init.d /usr/local/docker/nacos/logs 3.安装nacos…

GGHead:基于3D高斯的快速可泛化3D数字人生成技术

随着虚拟现实(VR)、增强现实(AR)和数字人技术的发展,对高质量、实时生成的3D头部模型的需求日益增长。传统的3D生成方法往往依赖于复杂的2D超分辨率网络或大量的3D数据,这不仅增加了计算成本,还限制了生成速度和灵活性。为了解决这些问题,研究人员开发了一种名为GGHead…

加密与安全_TOTP 一次性密码生成算法

文章目录 PreTOTP是什么TOTP 算法工作原理TOTP 生成公式TOTP 与 HOTP 的对比Code生成TOTP验证 TOTP使用场景小结 TOTP 与 HOTP 的主要区别TOTP 与 HOTP应用场景比较TOTP 与 HOTP安全性分析 Pre 加密与安全_HTOP 一次性密码生成算法 https://github.com/samdjstevens/java-tot…

gdb 调试 linux 应用程序的技巧介绍

使用 gdb 来调试 Linux 应用程序时&#xff0c;可以显著提高开发和调试的效率。gdb&#xff08;GNU 调试器&#xff09;是一款功能强大的调试工具&#xff0c;适用于调试各类 C、C 程序。它允许我们在运行程序时检查其状态&#xff0c;设置断点&#xff0c;跟踪变量值的变化&am…

指针 (5)

目录 1. 字符指针变量 2. 数组指针变量 3. ⼆维数组传参的本质 4. 函数指针变量 5.typedef 关键字 6 函数指针数组 7.转移表 计算器的⼀般实现 1. 字符指针变量 在指针的类型中我们知道有⼀种指针类型为字符指针 char* #include <stdio.h> int main() {char* ch …

VB.net读写NDEF标签URI智能海报WIFI蓝牙连接

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 Public Class Form1Dim oldpicckey(0 To 5) As Byte 卡片旧密码Dim newpicckey(0 To 5) As Byte 卡片新密码Function GetTagUID() As StringDim status As ByteDim myctrlword As …

矩阵系统源码搭建的具体步骤,支持oem,源码搭建

一、前期准备 明确需求 确定矩阵系统的具体用途&#xff0c;例如是用于社交媒体管理、电商营销还是其他领域。梳理所需的功能模块&#xff0c;如多账号管理、内容发布、数据分析等。 技术选型 选择适合的编程语言&#xff0c;如 Python、Java、Node.js 等。确定数据库类型&…

Activiti7 工作流引擎学习

目录 一. 什么是 Activiti 工作流引擎 二. Activiti 流程创建步骤 三. Activiti 数据库表含义 四. BPMN 建模语言 五. Activiti 使用步骤 六. 流程定义与流程实例 一. 什么是 Activiti 工作流引擎 Activiti 是一个开源的工作流引擎&#xff0c;用于业务流程管理&#xf…

Linux开发讲课45--- 链表

Linux内核代码中广泛使用了数据结构和算法,其中最常用的有链表、队列kfifo、红黑树、基数树和位图。 链表 Linux内核代码大量使用了链表这种数据结构。链表是在解决数组不能动态扩展这个缺陷而产生的一种数据结构。 链表所包含的元素可以动态创建并插入和删除。链表的每个元素…

【经典机器学习算法】谱聚类算法及其实现(python)

&#x1f308; 个人主页&#xff1a;十二月的猫-CSDN博客 &#x1f525; 系列专栏&#xff1a; &#x1f3c0;深度学习_十二月的猫的博客-CSDN博客 &#x1f4aa;&#x1f3fb; 十二月的寒冬阻挡不了春天的脚步&#xff0c;十二点的黑夜遮蔽不住黎明的曙光 目录 1. 前言 2. 前…

躺平成长:微信小程序运营日记第二天

在进行属于生活的开源之后&#xff0c;自己更加感受到自己存在的渺茫&#xff0c;同时更加开始深刻领会&#xff0c;开源的重要性&#xff0c;在开源&#xff0c;开放&#xff0c;创造&#xff0c;再创新的思维模式下&#xff0c;不发布八部金刚功相关的训练视频&#xff0c;自…

每日一题|983. 最低票价|动态规划、记忆化递归

本题求解最小值&#xff0c;思路是动态规划&#xff0c;但是遇到的问题是&#xff1a;动态规划更新的顺序和步长&#xff0c;以及可能存在的递归溢出问题。 1、确定dp数组含义 dp[i]表示第i天到最后一天&#xff08;可能不在需要出行的天数里&#xff09;&#xff0c;需要花费…

Suricata:开源网络分析和威胁检测

Suricata 是一款高性能、开源网络分析和威胁检测软件&#xff0c;被大多数私人和公共组织使用&#xff0c;并被主要供应商嵌入以保护他们的资产。 Suricata 功能 Suricata 提供全面的网络安全监控 (NSM) 功能&#xff0c;包括记录 HTTP 请求、捕获和存储 TLS 证书以及从网络流…

汽车3d动画渲染选择哪个?选择最佳云渲染解决方案

面临汽车3D动画渲染挑战&#xff1f;选择正确的云渲染服务至关重要。探索最佳解决方案&#xff0c;优化渲染效率&#xff0c;快速呈现逼真动画。 汽车3d动画渲染选择哪个&#xff1f; 对于汽车3D动画渲染&#xff0c;选择哪个渲染器取决于你的项目需求、预算和期望的效果。Ble…

yolov8/9/10模型在安全帽、安全衣检测中的应用【代码+数据集+python环境+GUI系统】

yolov8910模型安全帽、安全衣检测中的应用【代码数据集python环境GUI系统】 yolov8/9/10模型在安全帽、安全衣检测中的应用【代码数据集python环境GUI系统】 背景意义 安全帽和安全衣在工业生产、建筑施工等高风险作业环境中是保护工人免受意外伤害的重要装备。然而&#xff0…

Qt 学习第十一天:QTableWidget 的使用

一、创建QTableWidget对象&#xff0c;设置大小&#xff0c;在窗口的位置 //创建tablewidgetQTableWidget *table new QTableWidget(this);table->resize(550, 300);table->move(100, 100); //移动 二、设置表头 //设置表头QStringList headerList; //定义headerList…

web开发(1)-基础

这是对b站课程的总结&#xff0c;后续可能会继续更 01 前后端分离介绍_哔哩哔哩_bilibili01 前后端分离介绍是Web应用开发-后端基础-基于Springboot框架的第1集视频&#xff0c;该合集共计29集&#xff0c;视频收藏或关注UP主&#xff0c;及时了解更多相关视频内容。https://w…

GPG error golang 1.19

1. 问题描述及原因分析 在飞腾2000的服务器&#xff0c;OS为Kylin Linux Advanced Server release V10环境下&#xff0c;docker版本为18.09.0&#xff08;docker-engine-18.09.0-101.ky10.aarch64&#xff09;&#xff0c;基于容器镜像golang:1.19编译新的容器镜像&#xff0…

【C++篇】启航——初识C++(上篇)

下篇&#xff1a;【C篇】启航——初识C&#xff08;下篇&#xff09; 目录 引言 一、C的起源和发展史 1.起源 2.C版本更新 二、C在⼯作领域中的应⽤ 三、C入门建议 1.参考文档 2.推荐书籍 四、C的第一个程序 1.C语言写法 2.C写法 五、命名空间 1.为什么要有命名空…