数据流处理技术与Flink框架

一·数据流

数据流定义:

数据流(Data Stream)是指数据以连续不断的方式到达和处理的序列。在现实世界中,许多数据来源都是以流的形式存在,比如:

1. 用户行为:用户在网站上的点击流、移动应用中的用户行为、社交媒体上的互动等。

2. 金融交易:股票市场中的交易记录、银行系统中的转账记录等。

3. 传感器数据:来自物联网设备(IoT)的实时数据,如温度、湿度、压力传感器等。

4. 日志文件:服务器日志、应用程序日志等,这些日志通常是连续生成的。

5. 网络流量:网络中的通信数据包,如路由器和交换机处理的数据。

数据流特点:

连续性:数据流是连续不断产生的,没有明确的开始和结束。

实时性:数据流需要实时或近实时的处理和分析。

大规模:数据流往往涉及大量的数据,需要能够扩展到大规模处理的系统。

有序性:数据流中的事件通常有一个固有的顺序,比如事件发生的时间顺序。

不确定性:数据流中的事件可能不完整、延迟到达或乱序到达。

二·数据流处理

怎么处理数据流------数据流处理是指对持续不断流入的数据进行实时处理和分析的过程

首先明白处理数据流的系统通常需要具备以下能力:

容错性:系统能够处理节点故障、网络问题等异常情况。

可扩展性:系统能够随着数据量的增加而水平扩展。

低延迟:系统能够快速处理数据,减少数据处理的时间

高吞吐量:系统能够处理高数据流速。

数据流处理流程:

1.数据采集:数据流可能来自多种源头,如传感器、在线事务、社交媒体、应用程序等。

2.数据预处理:包括清洗、过滤、格式化等,以确保数据质量。

3.数据流处理:使用流处理框架对数据进行实时分析和计算。

4.状态管理:在流处理中维护和更新状态信息,用于跟踪历史数据和上下文。

5.容错处理:确保系统在发生故障时能够恢复,并保证数据处理的一致性。

6.输出结果:将处理后的数据写入外部系统,如数据库、文件系统或实时仪表板。

7.监控和优化:监控处理性能和数据流的健康状况,并根据需要进行优化。

三·flink数据流处理框架

流处理框架(如 Apache Flink、Apache Storm、Apache Kafka Streams)专门设计用于处理数据流,它们提供了工具和 API 来构建能够实时分析和响应数据流的应用程序。

今天主要来说下flink数据流处理框架:

Flink 是一个开源的流处理框架,它能够处理无界和有界的数据流,提供高吞吐量、低延迟、容错等特性。Flink 通过其独特的架构和核心概念,能够实现实时数据流的处理。

Flink 架构

Flink 的架构主要由以下几个核心组件构成:

1. JobManager:负责协调和调度 Flink 任务的执行,管理任务的生命周期和故障恢复 。

2. TaskManager:负责执行实际的数据流处理任务,每个 TaskManager 包含多个 slots,用于执行不同的任务 。

3. StateBackend:StateBackend 定义了状态的存储方式,Flink 使用它来存储和管理状态数据

用来存储中间状态,支持故障恢复机制,可以是内存、文件系统或其他持久化存储 。

4. Checkpoint Coordinator:Checkpoint Coordinator 是 JobManager 中的一个组件,负责协调检查点(Checkpoint)的流程

在 JobManager 中负责触发 Checkpoint,确保在发生故障时可以从最近的状态恢复作业 。

5. ExecutionVertices:ExecutionVertices 是 Flink 作业中的执行单元,对应于数据流图中的一个算子或一组并行的算子。实际执行任务的组件,每一个都是 TaskManager 上的一个线程或进程 。

Flink 处理数据流的机制包括以下几个关键步骤:

1. 数据摄入:数据流从源头(如 Kafka、文件系统、数据库等)被摄入 Flink。

2. 数据转换:摄入的数据流经过一系列的转换操作,如 map、filter、keyBy、reduce、join 等,这些操作可以是无界的,也可以是有界的。

3. 状态管理:Flink 提供了强大的状态管理机制,允许应用程序维护跨事件的状态。状态可以是键控的,也可以是 operator 状态 。

4. 容错处理:Flink 使用 Checkpoint 机制来实现容错,通过周期性地对状态进行快照存储,确保系统能够在发生故障时恢复到最近的状态 。

5. 窗口操作:Flink 支持基于时间的窗口操作,允许对数据流进行分片处理,常见的窗口类型包括滚动窗口、滑动窗口和会话窗口 。

6. 输出结果:处理后的数据可以输出到外部系统,如数据库、文件系统或其他存储系统。

 Flink 的关键特性

高吞吐量、低延迟:Flink 的流处理引擎能够在毫秒级别处理数据,满足低延迟的应用需求。

容错和一致性:通过 Checkpoint 机制,保证数据处理的一致性和容错性 。

灵活的时间处理:Flink 支持事件时间、处理时间和摄入时间,提供灵活的时间处理功能 。

动态扩展:Flink 支持动态扩展,可以根据负载变化调整计算资源

Flink 的这些特性使其成为处理大规模实时数据流的强大工具,适用于各种实时数据处理场景,如实时监控、实时推荐系统、实时风控等。

了解更多数据处理与数据集成关干货内容请关注>>>FineDataLink官网

免费试用、获取更多信息,点击了解更多>>>体验FDL功能

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/880838.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Linux】几种常见配置文件介绍

配置文件目录 linux 系统中有很多配置文件目录/etc/systemd/system、/lib/systemd/system 以及/usr/lib/systemd/system 等,这三者有什么样的关系呢? 以下是网络上找的资料汇总,并加了一些操作验证。方便后期使用 介绍 目录/lib/systemd/s…

使用C#,MSSQL开发的钢结构加工系统

很久以前的项目,上位机使用C#开发。数据库使用mssql。控制系统选用了三菱PLC,上位机和PLC之间走ModbusTCP通讯协议。 主要功能:读取加工文件(csv格式),导入到数据库,并根据机床刀具规则&#x…

Python编码系列—Python命令模式:将请求封装为对象

🌟🌟 欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中…

【软件测试】详解软件测试中的测试级别

目录 一、测试级别二、组件测试三、开发者测试3.1测试与调试3.2 组件测试目标3.3 测试功能 四、稳健性测试4.1 效率的测试4.2 测试可维护性4.3 测试策略4.4 白盒测试 一、测试级别 软件系统通常是由许多子系统组成的,而这些子系统又是由多个组件组成的,…

VMware Aria Operations for Logs 8.18 发布,新增功能概览

VMware Aria Operations for Logs 8.18 - 集中式日志管理 请访问原文链接:https://sysin.org/blog/vmware-aria-operations-for-logs/,查看最新版。原创作品,转载请保留出处。 作者主页:sysin.org 集中式日志管理 VMware Aria …

C#测试调用FreeSpire.PDFViewer浏览PDF文件

Free Spire.PDFViewer是商业版Spire.PDFViewer的社区版本,支持以控件形式打开并查看PDf文件,但由于是免费版本,存在使用限制,打开的PDF文档只显示前10页内容。如果日常操作的pdf文件都不超过10页,可以考虑使用Free Spi…

Redis: Sorted Set 底层算法的简单分析

概述 我们先看下 Shorted Set 有序集合的内部数据结构所谓有序集合,比如有个容器,容器里边都已经排好序了,那无非就是快速的查找和插入不管你是查找还是插入,肯定要确定那个位置最简单的办法就是从最开头开始,挨个比较…

【unity进阶知识6】Resources的使用,如何封装一个Resources资源管理器

文章目录 一、Unity资源加载的几种方式1、Inspector窗口拖拽2、Resources3、AssetBundle4、Addressables(可寻址资源系统)5、AssetDatabase 二、准备三、同步加载Resources资源1、Resources.Load同步加载单个资源1.1、基本加载1.2、加载指定类型的资源1.…

无源码实现免登录功能

因项目要求需要对一个没有源代码的老旧系统实现免登录功能,系统采用前后端分离的方式部署,登录时前端调用后台的认证接口,认证接口返回token信息,然后将token以json的方式存储到cookie中,格式如下: 这里有…

HTTPS加密流程

本文尽量用最小的篇幅来介绍HTTPS的加密过程,如果还看不懂可以参考文末尾的文章。 加密算法 先简单介绍一下HTTPS中使用的是混合加密算法,即对称加密和非对称加密的混合使用: 1.对称加密:顾名思义就是加密和解密都是使用同一个密钥。 优点…

MySQL 问题小结

mysqld --initialize 初始化 data 文件夹 初始化的密码在这个 err 文件夹中

DC00025【含论文】基于协同过滤推荐算法springboot视频推荐管理系统

1、项目功能演示 DC00025【含文档】基于springboot短视频推荐管理系统协同过滤算法视频推荐系统javaweb开发程序设计vue 2、项目功能描述 短视频推荐系统分为用户和系统管理员两个角色 2.1 用户角色 1、用户登录、用户注册 2、视频中心:信息查看、视频收藏、点赞、…

数据链路层 ——MAC

目录 MAC帧协议 mac地址 以太网帧格式 ARP协议 ARP报文格式​编辑 RARP 其他的网络服务或者协议 DNS ICMP协议 ping traceroute NAT技术 代理服务器 网络层负责规划转发路线,而链路层负责在网络节点之间的转发,也就是"一跳"的具体传输…

Qt_绘图

目录 1、绘图核心类 2、QPainter类的使用 2.1 绘制线段 2.2 绘制矩形 2.3 绘制圆形 2.4 绘制文本 3、QPen类的使用 3.1 使用画笔 4、QBrush类的使用 4.1 使用画刷 5、绘制图片 5.1 测试QPixmap 5.1.1 图片移动 5.1.2 图标缩小 5.1.3 旋转图片 5.1.4 将…

【四】Spring Cloud OpenFeign原理分析

Spring Cloud OpenFeign原理分析 概述 Spring Cloud 微服务实践也有挺多年了,一直想着总结一下这系列的知识点,最近终于下定决心来出一个Spring Cloud 系列文章了。本文主要围绕fegin组件来进行讲解,文中将会给出基础使用的示例,还…

docker-compose 快速部署clickhouse集群

在本教程中,我们将学习如何使用 Docker Compose 部署一个带有三节点的 ClickHouse 集群,并使用 ZooKeeper 作为分布式协调服务。 前提条件 注意事项: 镜像版本号注意保持一致 [zookeeper:3.7, clickhouse/clickhouse-server:22.5.4]config…

uniapp微信小程序使用ucharts遮挡自定义tabbar的最佳解决方案

如图所示: 使用的ucharts遮挡住了我自定义的tabbar(如果不是提需求的有病,我才不会去自定义tabbar) 查阅了不少文档,说是开启 ucharts 的 canvas2d 即可: 官网文档地址: uCharts官网 - 秋云…

资源《Arduino 扩展板1-LED灯》说明。

资源链接:Arduino 扩展板1-LED灯 1.文件明细: 2.文件内容说明 包含:AD工程、原理图、PCB。 3.内容展示 4.简述 该文件为PCB工程,采用AD做的。 该文件打板后配合Arduino使用,属于Arduino的扩展板。 该文件主要有…

深度学习自编码器 - 分布式表示篇

序言 深度学习作为人工智能领域的重要分支,其核心在于表示学习( Representation Learning \text{Representation Learning} Representation Learning),尤其是分布式表示( Distributed Representation \text{Distribut…

netty之基础aio,bio,nio

前言 在Java中,提供了一些关于使用IO的API,可以供开发者来读写外部数据和文件,我们称这些API为Java IO。IO是Java中比较重要知识点,且比较难学习的知识点。并且随着Java的发展为提供更好的数据传输性能,目前有三种IO共…