算法.图论-并查集

文章目录

    • 1. 并查集介绍
    • 2. 并查集的实现
      • 2.1 实现逻辑
      • 2.2 isSameSet方法
      • 2.3 union方法(小挂大优化)
      • 2.4 find方法(路径压缩优化)
    • 3. 并查集模板
    • 4. 并查集习题
      • 4.1 情侣牵手
      • 4.2 相似字符串组

1. 并查集介绍

定义:
并查集是一种树型的数据结构,用于处理一些不相交集合的合并及查询问题(即所谓的并、查)。比如说,我们可以用并查集来判断一个森林中有几棵树、某个节点是否属于某棵树等
并查集的常见的方法:

方法作用
int find (int)作用就是查找一个元素所在大集合的代表元素, 返回这个元素
boolean isSameSet (int, int)判断传入的两个元素是不是同属一个大集合, 返回T/F
void union (int, int)合并传入的两个元素所代表的大集团(注意不仅仅是这两个元素)

并查集的时间复杂的要求就是实现上述的操作的时间复杂度都是O(1)
下面是关于并查集的一些常见的操作的图示
在这里插入图片描述

2. 并查集的实现

2.1 实现逻辑

不论是哈希表的机构还是list的顺序结构或者是其他的常见的数据结构, 都不可以做到时间复杂度是O(1)的这个指标, 我们直接介绍实现的方式 --> 通过一个father数组以及size数组
关于这两个数组的含义:

数组含义
father下标i代表的是元素的编号, father[i]代表的是他的父亲节点
size下标i代表的是元素的编号, size[i]代表的是这个节点的孩子节点的个数(包括本身)

在这里插入图片描述
初态就是这个样子, 每一个元素的父亲节点都是其本身, 也就是说每一个节点本身就是其所在集合的代表节点, 然后这个集合的大小就是1
下面我们执行操作
step1 : union(a, b)
step2 : union(c, a)
下面是图示(图解一下操作1, 操作2其实是同理的)
在这里插入图片描述
上面的图解也说明了很多问题, 我们的树形结构的挂载的方式是, 小挂大(小的树挂到大树上)
此时进行了union操作之后的逻辑结构就是左下角所示, 此时我们 {a,b} 共属于一个集合, 进行find操作的时候, find(a) 的结果是 b, find(b) 的结果也是 b, 此时size数组中a的值不会再使用了, 因为这时a不可能是领袖节点了, 也就是说这个数据是脏数据…

2.2 isSameSet方法

其实正常来说我们的isSameSet方法和union方法都需要调用find方法, 但是find方法中的路径压缩的技巧是比较重要的, 所以我们单独拎出来放后面说(这里假设已经实现好了), 实现也是比较简单的, 只需要找到这两个元素的代表领袖节点看是不是一个就可以了

	//isSameSet方法private static boolean isSameSet(int a, int b){return find(a) == find(b);}

2.3 union方法(小挂大优化)

解释一下小挂大概念, 在算法导论这本书中说到的是一种秩的概念, 本质上也是为了降低树(集团)的高度所做出的努力, 但这个不是特别必要的…, 也就是在两大集团合并的时候, 小集团(小数目的节点)要依附大集团而存在, 也就是合并的时候, 小集团要挂在大集团上面, 这样可以从一定程度上降低树的高度
代码实现如下

	//union方法private static void union(int a, int b){int fa = find(a);int fb = find(b);if(fa != fb){sets--;if(size[fa] >= size[fb]){father[fb] = fa;size[fa] += size[fb];}else{father[fa] = fb;size[fb] += size[fa];}}}

2.4 find方法(路径压缩优化)

上面的union的小挂大优化, 其实不是特别必要的, 但是我们find方法中的路径压缩是一定要完成的, 如果没有路径压缩的话, 我们的时间复杂度的指标就不会是O(1)
路径压缩指的就是, 在find方法找到父亲节点的时候, 同时把我们的沿途所有节点的父亲节点都改为找到的父亲节点, 以便于操作的时候不用遍历一个长链去寻找父亲节点, 图解如下
在这里插入图片描述
假设我们执行find(a)操作, 就会如图所示把我们的沿途的所有节点的父亲节点都改为领袖节点e
我们借助的是stack栈结构, 或者是递归(其实就是系统栈)实现的

private static final int MAX_CP = 31;private static final int[] father = new int[MAX_CP];private static final int[] size = new int[MAX_CP];private static final int[] stack = new int[MAX_CP];//find方法(路径压缩的迭代实现)private static int find1(int a){int sz = 0;while(father[a] != a){stack[sz++] = a;a = father[a];}while(sz > 0){father[stack[--sz]] = a;}return father[a];}//find方法(路径压缩的递归实现)private static int find(int a){if(father[a] != a){father[a] = find(father[a]);}return father[a];}

3. 并查集模板

上面就是我们关于并查集最基本的分析, 我们提供几个测试链接测试一下

牛客并查集模板

//并查集的基本实现方式
import java.util.*;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.io.OutputStreamWriter;
import java.io.IOException;public class Main {private static final int MAXN = 1000001;private static final int[] father = new int[MAXN];private static final int[] size = new int[MAXN];private static final int[] stack = new int[MAXN];private static int cnt = 0;private static void build(int sz) {cnt = sz;for (int i = 0; i <= cnt; i++) {father[i] = i;size[i] = 1;}}private static int find(int n) {//下面就是扁平化(路径压缩的处理技巧)int capacity = 0;while (father[n] != n) {stack[capacity++] = n;n = father[n];}//开始改变沿途节点的指向while (capacity > 0) {father[stack[--capacity]] = n;}return father[n];}private static boolean isSameSet(int a, int b) {return find(a) == find(b);}private static void union(int a, int b) {//下面的设计就是小挂大的思想int fa = find(a);int fb = find(b);if (fa != fb) {if (size[fa] >= size[fb]) {father[fb] = fa;size[fa] += size[fb];} else {father[fa] = fb;size[fb] += size[fa];}}}//我们使用的是高效率的io工具(使用的其实就是一种缓存的技术)public static void main(String[] args) throws IOException {BufferedReader br = new BufferedReader(new InputStreamReader(System.in));StreamTokenizer in = new StreamTokenizer(br);PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));while (in.nextToken() != StreamTokenizer.TT_EOF) {int n = (int)in.nval;build(n);in.nextToken();int m = (int)in.nval;for (int i = 0; i < m; i++) {in.nextToken();int op = (int)in.nval;in.nextToken();int n1 = (int)in.nval;in.nextToken();int n2 = (int)in.nval;if (op == 1) {out.println(isSameSet(n1, n2) ? "Yes" : "No");} else {union(n1, n2);}}}out.flush();out.close();br.close();}
}

洛谷并查集模板

//并查集的基本实现方式
import java.util.*;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.io.OutputStreamWriter;
import java.io.IOException;public class Main {private static final int MAXN = 100001;private static final int[] father = new int[MAXN];private static final int[] size = new int[MAXN];private static final int[] stack = new int[MAXN];private static int cnt = 0;private static void build(int sz){cnt = sz;for(int i = 0; i <= cnt; i++){father[i] = i;size[i] = 1;}}private static int find(int n){//下面就是扁平化(路径压缩的处理技巧)int capacity = 0;while(father[n] != n){stack[capacity++] = n;n = father[n];}//开始改变沿途节点的指向while(capacity > 0){father[stack[--capacity]] = n;}return father[n];}private static boolean isSameSet(int a, int b){return find(a) == find(b);}private static void union(int a, int b){//下面的设计就是小挂大的思想int fa = find(a);int fb = find(b);if(fa != fb){if(size[fa] >= size[fb]){father[fb] = fa;size[fa] += size[fb];}else{father[fa] = fb;size[fb] += size[fa];}}}//我们使用的是高效率的io工具(使用的其实就是一种缓存的技术)public static void main(String[] args) throws IOException{BufferedReader br = new BufferedReader(new InputStreamReader(System.in));StreamTokenizer in = new StreamTokenizer(br);PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));while(in.nextToken() != StreamTokenizer.TT_EOF){int n = (int)in.nval;build(n);in.nextToken();int m = (int)in.nval;for(int i = 0; i < m; i++){in.nextToken();int op = (int)in.nval;in.nextToken();int n1 = (int)in.nval;in.nextToken();int n2 = (int)in.nval;if(op == 2){out.println(isSameSet(n1, n2) ? "Y" : "N");}else{union(n1, n2);}}}out.flush();out.close();br.close();}
}

4. 并查集习题

4.1 情侣牵手

leetcode765.情侣牵手题目链接
在这里插入图片描述

//本题的前置知识可能是置换环(这一题的并查集的思路尤其不好想)
class Solution {
//核心点的分析就是如果一个集合里面有k对情侣, 那么我们至少需要交换 k - 1 次private static final int MAX_CP = 31;private static final int[] father = new int[MAX_CP];private static final int[] size = new int[MAX_CP];private static final int[] stack = new int[MAX_CP];private static int sets = 0;//初始化并查集private static void build(int n){sets = n;for (int i = 0; i < n; i++) {father[i] = i;size[i] = 1;}}//find方法(路径压缩的实现)//find方法(路径压缩的递归实现)private static int find(int a){if(father[a] != a){father[a] = find(father[a]);}return father[a];}//isSameSet方法private static boolean isSameSet(int a, int b){return find(a) == find(b);}//union方法private static void union(int a, int b){int fa = find(a);int fb = find(b);if(fa != fb){sets--;if(size[fa] >= size[fb]){father[fb] = fa;size[fa] += size[fb];}else{father[fa] = fb;size[fb] += size[fa];}}}public int minSwapsCouples(int[] row) {int cpN = row.length / 2;build(cpN);for(int i = 0; i < row.length; i += 2){union(row[i] / 2, row[i + 1] / 2);}return cpN - sets;}
}

4.2 相似字符串组

leetcode839.相似字符串组
在这里插入图片描述

//简单的并查集的应用
class Solution {private static final int MAXN = 301;private static final int[] father = new int[MAXN];private static final int[] size = new int[MAXN];private static final int[] stack = new int[MAXN];private static int sets = 0;//初始化并查集的方式private static void build(int n){sets = n;for(int i = 0; i < n; i++){father[i] = i;size[i] = 1;}}//find方法private static int find(int a){int sz = 0;while(father[a] != a){stack[sz++] = a;a = father[a];}while(sz > 0){father[stack[--sz]] = a;}return father[a];}//isSameSet方法 private static boolean isSameSet(int a, int b){return find(a) == find(b);}//union方法private static void union(int a, int b){int fa = find(a);int fb = find(b);if(fa != fb){sets--;if(size[fa] >= size[fb]){size[fa] += size[fb];father[fb] = fa;}else{size[fb] += size[fa];father[fa] = fb;}}}public int numSimilarGroups(String[] strs) {int n = strs.length;int m = strs[0].length();build(n);for(int i = 0; i < n; i++){for(int j = i + 1; j < n; j++){if (find(i) != find(j)) {int diff = 0;for (int k = 0; k < m && diff < 3; k++) {if (strs[i].charAt(k) != strs[j].charAt(k)) {diff++;}}if (diff == 0 || diff == 2) {union(i, j);}}}}return sets;}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/880356.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SentencePiece进行文本分类

SentencePieces 前言 Step1:故事 SentencePiece 是一个无监督的文本分词器和 detokenizer(还原回去的&#xff1f;)主要用于词汇表大小是预定的文本生成系统中它拓展了原始句子的训练&#xff0c;实现子词单元如 BPE 和 unigram language model技术亮点 纯数据驱动&#xff…

Azure Kinect 人体跟踪关节

Azure Kinect 人体跟踪关节 azure kinect dk 提取人体骨骼 要在Azure Kinect DK上提取人体骨骼&#xff0c;你需要使用Azure Kinect SDK和OpenPose库。以下是一个简化的代码示例&#xff0c;展示如何集成这两个库来提取骨骼关键点&#xff1a; 首先&#xff0c;确保你已经安装…

Web3Auth 如何工作?

Web3Auth 用作钱包基础设施&#xff0c;为去中心化应用程序 (dApp) 和区块链钱包提供增强的灵活性和安全性。在本文档中&#xff0c;我们将探索 Web3Auth 的功能&#xff0c;展示它如何为每个用户和应用程序生成唯一的加密密钥提供程序。 高级架构 Web3Auth SDK 完全存在于用…

软件测试基础篇

&#x1f345; 点击文末小卡片&#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 “尽早的介入测试&#xff0c;遇到问题的解决成本就越低” 随着软件测试技术的发展&#xff0c;测试工作由原来单一的寻找缺陷逐渐发展成为预防缺陷&#xff0c;…

文章解析: 一不小心掉入了 Java Interface 的陷阱

一不小心掉入了 Java Interface 的陷阱_腾讯新闻 import org.springframework.util.CollectionUtils; import java.util.ArrayList; import java.util.Iterator; import java.util.List;// 方便起见就都放在一个文件中了 public class TestSimpleResult {public static void ma…

Rust和Go谁会更胜一筹

在国内&#xff0c;我认为Go语言会成为未来的主流&#xff0c;因为国内程序员号称码农&#xff0c;比较适合搬砖&#xff0c;而Rust对心智要求太高了&#xff0c;不适合搬砖。 就个人经验来看&#xff0c;Go语言简单&#xff0c;下限低&#xff0c;没有什么心智成本&#xff0c…

华为认证HCIA篇--网络通信基础

大家好呀&#xff01;我是reload。今天来带大家学习一下华为认证ia篇的网络通信基础部分&#xff0c;偏重一些基础的认识和概念性的东西。如果对网络通信熟悉的小伙伴可以选择跳过&#xff0c;如果是新手或小白的话建议还是看一看&#xff0c;先有个印象&#xff0c;好为后续的…

安卓Settings值原理源码剖析存储最大的字符数量是多少?

背景&#xff1a; 平常做rom相关开发时候经常需要与settings值打交道&#xff0c;需要独立或者存储一个settings的场景&#xff0c;群里有个学员朋友就问了一个疑问&#xff0c;那就是Settings的putString方式来存储字符&#xff0c;那么可以存储的最大字符是多少呢&#xff1…

Excel锁定单元格,使其不可再编辑

‌在Excel中&#xff0c;锁定单元格后仍然可以编辑‌&#xff0c;这主要涉及到对特定单元格或区域的锁定与保护工作表的设置。以下是实现这一功能的具体步骤&#xff1a; ‌解除工作表的锁定状态‌&#xff1a;首先&#xff0c;需要全选表格&#xff08;使用CtrlA快捷键&#x…

[数据集][目标检测]中草药类型识别检测数据集VOC+YOLO格式7976张45类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;7976 标注数量(xml文件个数)&#xff1a;7976 标注数量(txt文件个数)&#xff1a;7976 标注…

AI公司的妄念:招个AI产品经理来想idea

AI公司在探索方向时&#xff0c;一旦老板或负责人的想法陷入瓶颈&#xff08;或没时间想特别细分的方向&#xff09;&#xff0c;往往会希望招一个AI产品经理来想idea&#xff08;创新/探索新方向&#xff09;&#xff0c;预期他某天突然想出个特别好的idea。 一、这个思路&…

【机器学习】12-决策树1——概念、特征选择

机器学习10-决策树1 学习样本的特征&#xff0c;将样本划分到不同的类别&#xff08;分类问题&#xff09;或预测连续的数值&#xff08;回归问题&#xff09;。 选择特征&#xff0c;划分数据集&#xff0c;划分完成形成模型&#xff08;树结构&#xff09;&#xff0c;一个…

OSI 七层模型和TCP/IP 四层模型的区别

目录 OSI 七层模型 介绍 1. 物理层&#xff08;Physical Layer&#xff09; 2. 数据链路层&#xff08;Data Link Layer&#xff09; 3. 网络层&#xff08;Network Layer&#xff09; 4. 传输层&#xff08;Transport Layer&#xff09; 5. 会话层&#xff08;Session …

【网络安全】基础知识详解(非常详细)零基础入门到精通,收藏这一篇就够了

一、什么是网络安全&#xff1f; 百度上对“网络安全”是这么介绍的&#xff1a; 网络安全是指网络系统的硬件、软件及其系统中的数据受到保护&#xff0c;不因偶然的或者恶意的原因而遭受到破坏、更改、泄露、系统连续可靠正常地运行&#xff0c;网络服务不中断。” 嗯…是不…

地表最强开源大模型!Llama 3.2,如何让你的手机变身私人智能助理

你有没有想过&#xff0c;为什么现在的手机越来越像小型电脑&#xff1f;无论是拍照、看视频&#xff0c;还是用各种APP&#xff0c;甚至是AI助手&#xff0c;手机的功能几乎无所不能。其实&#xff0c;这一切的背后有一个技术正在悄悄改变我们的生活&#xff0c;那就是Llama 3…

开发手札:内网开发Unity导致操作和编译卡顿的问题

最近一个工程切换了最新的unity和packages&#xff0c;在外网开发没什么问题&#xff0c;切换到内网接入保密开发后&#xff0c;发现不论是操作编辑器还是编译代码&#xff0c;巨卡无比。 以上是仅仅写了一句int a 1;后&#xff0c;编译代码的速度。 经过分…

初试Bootstrap前端框架

文章目录 一、Bootstrap概述二、Bootstrap实例1、创建网页2、编写代码3、代码说明4、浏览网页&#xff0c;查看结果5、登录按钮事件处理6、浏览网页&#xff0c;查看结果 三、实战小结 一、Bootstrap概述 大家好&#xff0c;今天我们将一起学习一个非常流行的前端框架——Boot…

在虚幻引擎中实时显示帧率

引擎自带了显示帧率的功能 但是只能在编辑器中显示 , 在游戏发布后就没有了 , 所以我们要自己做一个 创建一个控件蓝图 创建画布和文本 , 修改文本 文本绑定函数 , 点击创建绑定 添加一个名为 FPS 的变量 格式化文本 用大括号把变量包起来 {FPS Int} FPS 然后转到事件图表…

【论文串烧】多媒体推荐中的模态平衡学习 | 音视频语音识别中丢失导致的模态偏差对丢失视频帧鲁棒性的影响

文章目录 一、多媒体推荐中的模态平衡学习1.1 研究背景1.2 解决问题1.3 实施方案1.4 文章摘要1.5 文章重点1.6 文章图示图 1&#xff1a;不同模型变体在 AmazonClothing 数据集上的初步研究图 2&#xff1a;CKD模型架构的说明图 3&#xff1a;在 Amazon-Clothing 数据集上训练过…

科研绘图系列:R语言多个AUC曲线图(multiple AUC curves)

文章目录 介绍加载R包导入数据数据预处理画图输出结果组图系统信息介绍 多个ROC曲线在同一张图上可以直观地展示和比较不同模型或方法的性能。这种图通常被称为ROC曲线图,它通过比较不同模型的ROC曲线下的面积(AUC)大小来比较模型的优劣。AUC值越大,模型的诊断或预测效果越…