阿里开源多模态大模型Ovis1.6,重塑出海电商AI格局

阿里开源Ovis1.6:多模态领域再夺第一

阿里再一次证明了自己在多模态领域的实力。这一次,阿里国际AI团队开源的多模态大模型Ovis1.6,不仅成功开源,还在多模态评测基准OpenCompass上击败了Qwen2VL-7B、InternVL2-26B和MiniCPM-V-2.6等主流开源模型,荣登300亿参数以下模型榜首。

Ovis1.6不仅仅是在视觉感知推理、数学推理以及科学分析等多项任务中表现优异,甚至在一些评测中超过了闭源模型GPT-4o-mini。无论是学术研究、生活场景,还是金融财报分析,Ovis1.6的表现堪称卓越。

Ovis1.6的实际应用

在应用方面,Ovis1.6展示了多模态大模型的广泛适用性。例如,它可以通过视觉理解和数学推理来帮助用户处理复杂的大学数学问题;

还能够解析论文,生成关键内容,或进行财务报表的分析。

这一模型甚至可以通过图像分析,生成简单易懂的烹饪指导,例如教用户如何做一道经典的炸鱼薯条。

更重要的是,Ovis系列大模型遵循Apache 2.0开源协议,允许开发者进行商用。这种开放性和灵活性使其在开发和商用环境中具有极高的实用价值。​

技术细节揭秘:视觉与文本嵌入的对齐

阿里国际AI团队在开发Ovis1.6时,针对多模态模型存在的视觉与文本信息不协调的问题提出了创新性的解决方案。传统多模态大模型往往通过简单的连接器将预训练的大语言模型(LLM)与视觉Transformer结合,但这种方法导致文本和视觉模块难以有效融合,影响模型的整体性能。

Ovis1.6引入了视觉Tokenizer、视觉嵌入表以及大语言模型相结合的架构,通过可学习的视觉嵌入表,将连续的视觉特征转化为结构化的视觉token。然后,这些视觉token会和文本token一起被处理,完成多模态任务。

这种架构设计,不仅解决了视觉和文本信息的对齐问题,还显著提升了模型在处理复杂视觉任务和文本生成任务时的性能。

优化与应用

Ovis1.6相较于前代产品Ovis1.5,在架构、数据以及训练策略等方面进行了全面优化。例如,采用动态子图方案来灵活处理不同分辨率的图像特征,在实际任务中提升了模型的应对能力。数据方面,Ovis1.6涵盖了丰富的数据集,如Caption、OCR、表格、图表和数学数据,确保模型在多个应用场景中保持优异表现。训练策略方面,通过DPO等优化手段,进一步增强了模型的生成和理解复杂任务的能力。

实验表明,Ovis1.6与基于MLP连接器的架构相比,性能提升了8.8%。此外,Ovis1.6已经应用于阿里国际的多项实际业务中,特别是在出海电商领域,展现出了显著的降本增效效果。

Ovis1.6助力出海电商

阿里国际通过Ovis1.6的强大AI能力,改变了跨境电商领域的工作方式。特别是在退货和退款审核环节,Ovis1.6通过处理用户提供的图文、视频信息,实现了秒级别的审核,极大减少了人力成本,提高了效率和一致性,确保了商家与消费者的公平权益。

此外,Ovis1.6还在商品属性提取、生成卖点等应用场景中被广泛应用,优化了商品发布流程,并提升了商品的搜索量和曝光度。阿里国际的AI能力已覆盖营销、客户服务、商品发布等40多个应用场景,日均调用超过5000万次。

AI助力商家:降本增效的秘密武器

Ovis1.6只是阿里国际AI能力的一部分,阿里国际还构建了多语言增强大模型Marco,以及电商版多模态大模型MarcoVL,专门为电商领域提供定制化服务。这些AI技术已经成为跨境商家在全球市场中提升竞争力的重要工具。

例如,通过AI生成的多语言商品描述,使得商家能够突破语言障碍,更加高效地与全球消费者沟通。AI图片处理技术,如一键生成虚拟试衣效果等,也让商品展示更加生动,进一步提高了购买转化率。

阿里国际的Ovis1.6大模型,不仅在技术上取得了重要突破,更在实际商业应用中展现了强大的降本增效能力。通过开源和AI技术的赋能,阿里国际为出海电商商家提供了更具竞争力的工具和服务,也为全球开发者和企业提供了更多技术创新的可能。

对于广大开发者而言,Ovis1.6的开源无疑是一个重大利好,为他们带来了强大的多模态技术,推动更多创新和应用的诞生。

Ovis1.6开源地址和Demo:
arXiv: https://arxiv.org/abs/2405.20797
Github: https://github.com/AIDC-AI/Ovis
Huggingface:https://huggingface.co/AIDC-AI/Ovis1.6-Gemma2-9B
Demo:https://huggingface.co/spaces/AIDC-AI/Ovis1.6-Gemma2-9B

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/879872.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker 进入容器并运行命令的方法

目录 理解 Docker 容器的基本概念 使用 docker exec 进入运行中的容器 基本用法 常用选项解析 选项详解 实际案例演示 1. 进入容器的交互式 Shell 2. 在容器中运行单个命令 3. 以指定用户运行命令 4. 设置环境变量并运行命令 5. 指定工作目录 使用 docker attach 附…

标准库标头 <bit>(C++20)学习

<bit>头文件是数值库的一部分。定义用于访问、操作和处理各个位和位序列的函数。例如&#xff0c;有函数可以旋转位、查找连续集或已清除位的数量、查看某个数是否为 2 的整数幂、查找表示数字的最小位数等。 类型 endian (C20) 指示标量类型的端序 (枚举) 函数 bit_ca…

使用LangGPT提示词让大模型比较浮点数

使用LangGPT提示词让大模型比较浮点数 背景介绍环境准备创建虚拟环境安装一些必要的库安装其他依赖部署大模型启动图形交互服务设置提示词与测试 LangGPT结构化提示词 背景介绍 LLM在对比浮点数字时表现不佳&#xff0c;经验证&#xff0c;internlm2-chat-1.8b (internlm2-cha…

HObject复制耗时试用

测试源码一 //第一步const int N 1000;HObject[] imgs new HObject[N];for (int i 0; i < N; i){HOperatorSet.GenImageConst(out imgs[i], "byte", 1024 i, 1024 i);}//第二步List<HObject> lists new List<HObject>();for(int i 0; i < …

基于PHP的新闻管理系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 【2025最新】基于phpMySQL的新闻管理系统。…

MySQL的缓存策略

目录 一、MySQL 缓存方案用来干什么 二、提升MySQL访问性能的方式 1、读写分离&#xff08;MySQL的主从复制&#xff09; 2、连接池 3、异步连接 三、缓存方案是怎么解决的 1、缓存与MySQL一致性状态分析 2、制定热点数据的读写策略 四、缓存方案问题的解决方法 1、缓…

酸枣病虫害智能化防控系统的探索与实践,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建枣类作物种植场景下酸枣病虫害智能检测识别系统

智慧农业&#xff0c;作为现代农业的高级形态&#xff0c;通过集成物联网、大数据、人工智能等先进技术&#xff0c;实现了农业生产过程的精准化、智能化管理。在酸枣等经济作物的种植过程中&#xff0c;病虫害的及时监测与防控直接关系到作物的产量与质量&#xff0c;进而影响…

react hooks--React.memo

基本语法 React.memo 高阶组件的使用场景说明&#xff1a; React 组件更新机制&#xff1a;只要父组件状态更新&#xff0c;子组件就会无条件的一起更新。 子组件 props 变化时更新过程&#xff1a;组件代码执行 -> JSX Diff&#xff08;配合虚拟 DOM&#xff09;-> 渲…

Knife4j 一款基于Swagger的开源文档管理工具

一、简单介绍 1.1 简介 Knife4j 是一款基于Swagger的开源文档管理工具&#xff0c;主要用于生成和管理 API 文档 二、使用步骤&#xff1a; 2.1 添加依赖&#xff1a; <dependency><groupId>com.github.xiaoymin</groupId><artifactId>knife4j-spr…

spark之不同序列化对比

一&#xff0c;spark的rdd的序列话不同介绍 下面是使用不同序列化后的占用资源和数据大小 2&#xff0c;sparksql中序列化的区别 sparksql中使用序列化和不使用差别不大&#xff0c;英文sparksql中默认使用了encode自己实现的序列化方法&#xff0c;加上与不加序列化差别不大…

编译成功!QT/6.7.2/Creator编译Windows64 MySQL驱动(MSVC版)

相邻你找了很多博文&#xff0c;都没有办法。现在终于找到了正宗。 参考 GitHub - thecodemonkey86/qt_mysql_driver: Typical symptom: QMYSQL driver not loaded. Solution: get pre-built Qt SQL driver plug-in required to establish a connection to MySQL / MariaDB u…

.whl文件下载及pip安装

以安装torch_sparse库为例 一、找到自己需要的版本&#xff0c;点击下载。 去GitHub的pyg-team主页中找到pytorch-geometric包。网址如下&#xff1a; pyg-team/pytorch_geometric​github.com/pyg-team/pytorch_geometric 然后点击如图中Additional Libraries位置的here&am…

Leetcode Hot 100刷题记录 -Day18(反转链表)

反转链表&#xff1a; 问题描述&#xff1a; 给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5] 输出&#xff1a;[5,4,3,2,1]示例 2&#xff1a; 输入&#xff1a;head [1,2] 输出&a…

基于阿里云免费部署Qwen1-8B-chat模型并进行lora参数微调从0到1上手操作

文章目录 一、申请资源二、创建实例三、克隆微调数据四、部署Qwen1-8B-chat模型1、环境配置2、模型下载3、本地模型部署 五、模型微调1、拉取Qwen仓库源码2、微调配置3、合并微调参数4、本地部署微调模型 一、申请资源 阿里云账号申请PAI资源详细教程我已于部署ChatGLM3时写过…

双立方(三次)卷积插值

前言 图像处理中有三种常用的插值算法&#xff1a; 最邻近插值 双线性插值 双立方&#xff08;三次卷积&#xff09;插值 其中效果最好的是双立方&#xff08;三次卷积&#xff09;插值&#xff0c;本文介绍它的原理以及使用 如果想先看效果和源码&#xff0c;可以拉到最底…

关于若尔当矩阵中过渡矩阵的求法

关于若尔当矩阵中过渡矩阵的求法 豆瓜爱数学 ​关注 桜井雪子 等 114 人赞同了该文章 本文主要介绍考研中常考的另一类问题&#xff0c;当我们确认一个Jordan标准形时&#xff0c;对于过渡矩阵如何确定&#xff1f;这个常常是我们复习过程中容易忽略的一部分内容&#xff0c;…

物联网——USART协议

接口 串口通信 硬件电路 电平标准 串口参数、时序 USART USART主要框图 TXE: 判断发送寄存器是否为空 RXNE: 判断接收寄存器是否非空 RTS为输出信号&#xff0c;用于表示MCU串口是否准备好接收数据&#xff0c;若输出信号为低电平&#xff0c;则说明MCU串口可以接收数据&#…

简单题69.x的平方根 (Java)20240919

问题描述&#xff1a; java代码&#xff1a; class Solution {public int mySqrt(int x) {if (x < 2) {return x; // 0 和 1 的平方根分别是它们自己}int left 2; // 从2开始&#xff0c;因为0和1已经处理了int right x / 2; // 最大可能的平方根不会超过 x / 2int mid;w…

列表、数组排序总结:Collections.sort()、list.sort()、list.stream().sorted()、Arrays.sort()

列表类型 一.Collections.sort() Collections.sort()用于List类型的排序&#xff0c;其提供了两个重载方法&#xff1a; 1.sort(List<T> list) &#xff08;1&#xff09;List指定泛型时只能指定引用数据类型&#xff0c;也就是说无法用于基本数据类型的排序。 &am…

Matlab R2024B软件安装教程

一、新版本特点 MATLAB R2024B版本带来了众多新特性和改进&#xff0c;旨在提升用户的内容创作体验和工程效率。以下是该版本的一些主要特点&#xff1a; 1. 性能提升和优化&#xff1a;R2024B版本在性能上进行了显著优化&#xff0c;无论是在提问、回答问题、发布新技巧还是…