大语言模型之ICL(上下文学习) - In-Context Learning Creates Task Vectors

  • 本文译自 《In-Context Learning Creates Task Vectors》 —— 论文中的作者也在用LLaMA模型,笔者自我感觉拉近和世界顶级人才的距离,哈哈
  • 内容较长,如想看结论直接看 摘要介绍结论几个章节即可,看细节请看目录索引。
  • 经验风险最小化 (Empirical Risk Minimization ERM): 这也是理论…

摘要

在大语言模型(LLMs)中的上下文学习(In-Context Learning,ICL) 成为一种强大的新学习范式(learning paradigm),然而我们对它的底层机制仍不够明确清晰。尤其是将其映射到传统的机器学习框架 就很具挑战性,其中我们使用 训练集S 在特定的假设类别中去寻找一个最佳拟合 函数f(x) 。我们发现,ICL可以学习到的函数通常具有非常简单的结构:他们直接表现近似于Transformer架构的LLMs,仅有的输入是 查询x 和 由训练集计算而得的单个’任务向量(task vector)', 因此 ICL可以看成是将 训练集S 压缩成一个单个任务向量(task vector) θ(S),然后利用该任务向量来调控Transformer以生成输出。为了验证上述观点,我们进行了一系列的综合实验,涵盖各种模型和任务。

原始信息

  • 论文:In-Context Learning Creates Task Vectors
  • 作者:Roee Hendel(Tel Aviv University), Mor Geva(Google DeepMind), Amir Globerson(Tel Aviv University, Google)
  • 地址:arxiv.org/pdf/2310.15…

介绍

什么是In Context Learning (ICL)

近年为大模型飞速发展,它的显著特点是可以从少量的示例集合(demonstrations)中就学到新规则。例如,我们向模型输入苹果->红色, 青柠->绿色 , 玉米 -> 就得到玉米对应的黄色输出。

上述过程至少涉及LLM的’ICL’与’Promot’的两大主题。 好像整篇就上述这段话有用,其他用途不大的感觉啊,太理论了,可花了时间不啥得删啊。

上述例子中模型仅基于两个例子就可学会了目标映射关系,这种能力我们称之为上下文学习 InContext Learning (ICL)。 ICL已经被广泛应用且效果显著。ICL如此神奇,人们开始探寻ICL背后潜在的机制,即模式内部是实现通过 示例集S 和查询 x 来生成所需要的输出?

image.png

Figure 1: ICL as learning in a Hypothesis Class(是ICL在假设类中的学习过程)

我们通过使用上图所示方法来处理该问题。在ICL中,我们给LLM一个含有特定任务的示例集S 提示(prompt) 和一个查询x,这个模型为 查询x 产生了输出, 如该示例中的输出’Yellow’。我们发现其内部的处理过程可以分解为两个部分(如上图所示): 第一部分是学习算法(learning algorithm) ‘, 用于计算 未知查询向量θ(S)θ(S),该学习算法我们称之为 在假设类中函数参数,上图中的蓝色部分。第二部分是由θ定义的规则在查询x上的应用,我们用ff表示,该规则不直接依赖于 示例集’S’, 如上图所示的黄色区域。

ICL的预测函数

ICL的预测函数是T([S,x])T([S,x]) , 其中T是自回归的语言模型(auto-regressive transformer), S表示用作ICL输入的训练示例集,x是查询参数, ICL根据输入x得到最终输出。而[S, x]表示为ICL对x和S串联后的输出。因此,在一般情况下,该预测函数可以是对S和x进行运算以产生输出的任意函数,这包括"非参数(non-parametric)"方法,诸如 最近邻法(nearest-neighbor)。

ICL解决了什么问题

来自统计学习理论的假定类概念。 在学习理论的表示中,通常我们将假定类看成H,H的每个元素都是函数H(x;θ)H(xθ), 表示为对输入x进行参数为向量θ 运算。 例如,如果x∈RdxR**d ,那么假定类H 就是线性分类器(linear classifier)的集合, h(x;θ)=θ⋅xh(x;θ)=θx, θ为系数向量,输入为输入。学习算法在探索一个元素h, 且 h∈HhH,该h可以更好的适应训练集,也就是所所谓的 经验风险最小化(Empirical Risk Minimization ERM)

ICL是否以这种方式执执目前并不十分清楚,最近已有机构正在探寻该问题。

例如:我们从头开始训练一个语言模型(Transformer)并在上下文中以线性回归方法执行, 这种新兴的学习方法类似于梯度下降法(Stochastic Gradient Descent SGD)。 然而对于要执行更多复杂任务的自然语言任务的LLMs来说,其假设空间可能是什么还不是特别明确。

在本论文中,我们证实了,在许多任务中,LLM的ICL都可以工作在假设空间中。给定一个训练集S,模型将其映射为任务向量θ(S),该向量表示为训练集S中映射/规则的描述。即给定模型T和一个向量θ,我们可以构造出一个用于完成指定任务的新函数f(x;θ)*f*(*x*;*θ*)。该函数f近似于原始模型,直接应用于输入x,无需示例集合直接由θ*θ*激活, 如下图。

image.png

  • Figure 2: Separating A and f. (分离A和f)
  • 该图在文章的讲到具体章节时还贴了一张, 主要是为了查看方便,在此多贴一张

我们的观点也与软提示有关,因为这两种方法都会针对特定任务调整转换器的功能。然而,在ICL中,任务向量是在前向传播中计算的,而不是经过微调。

论文贡献

我们的贡献包括:

  • 我们提出一种基于假设类的ICL机制, 并利用公开可用的大模型进行了一系列的不同任务试验以此来验证我们观点可靠性
  • 我们的研究进一步加深了对ICL的理解,可能对LLM执行特定任务的具有实际意义。

ICL框架

ICL的假设空间观点 - A Hypothesis Class View of ICL

受学习理论的假设类观点的启动, 我们的主要目标是理解ICl是否将一个示例集S映射到一个关于输入x(Query x)的函数及该映射是如何产生的。我们特别探寻了ICL是否将 示例集S 转化为 一个θ —— 某个特定假设空间内函数的"参数"。实验结果的确证明了 ICL是运行在假设空间上的

理论框架 - Theoretical Framework

我们用T表示decoder-only transformer(仅解码器的模型)大语言模型(LLM), S表示作用于ICl输入的一组示例集(如训练样本) , x表示为要求ICl提供输入的查询值。 我们使用T([S,x])T([S,x])表示ICl在Sx串联后的输出。

为了证实ICL是在一个假设空间内执行,我们将其内部机制两个不可或缺的部分:

  • 第一部分: “学习算法(learning algorithm,)",用A表示,该算法不依赖于查询x, 用于将示例集S映射到任务向量θ。因为注意力层可以访问到S和x,不依赖查询x的独立性并不明显(后来会讲到解决办法)。
  • 第二部分:规则应用(Rule Application),用f表示, 基于θ≡A(S)θA(S),主要用于将将查询x映射为输出。该规则同样独立于示例集S。同样独立性有待提高(后来会讲到解决办法)。

我们将 示例集S+查询x 至 预测输出 的整体映射关系定义为公式: T[S;x]=F[x;A(S)]T[S;x]=F[x;A(S)]

如果我们可以将LLM的前向传播分按上述分为两个部分,我们可以将ICL看成在H=f(⋅;θ)∣θH=f(⋅;θ)∣θ的假设类中执行。

假设类 - A Proposed Hypothesis Class

如上图(Figure 2)所示框架,根据A和f的不同选择,假设类会有许多可能的实现。我们将描述重点在以Transfomer框架为基础的实现上。

首先我们以(Figure 1)所示的方式来设置ICL, 其中输入一个x(i.e., Corn)外加一个 → 符号。 学习过程我们分为两个部分:

  • 基于训练集S的参数向量x,并将由该参数向量定义规则应用于查询x。
  • 前L层计算得到的 A 和 → 符号负责更新参数向量 θ ,然后用参数向量 θ 和查询x作为剩下的层的输入并产生输出。上上图(Figure 1).

解决示例集S和查询x 在transformer中的任务层都可见的问题.

image.png

Figure 2: Separating A and f. (分离A和f)

Figure 2展示了分离的A和f的图示。为了让θ独立于查询x, 我们引入了一个虚拟变量 x‘x‘ (i.e. x’PlumxPlum) 以及 使用L层的→符号来表示向量θ,以防止f直接依赖于S。下面章节将详细描述

A和f的隔离 - Separating A and f

在常规的前向传播过程中,我们面对的挑战是:

  • 对应于A的初始L层, 更新→符号去创建参数向量θ以及处理Query x。该过程有可能存在对x的依赖,以至于会让θ对x也有了不必要的依赖。
  • 对应于f的剩余层, 因为可直接访问示例集S,因此在计算中存在不仅使用了x和θ的情况。

为解决上述问题,我们采用了如下措施

  • 针对第1个问题,我们引入了 “dummy query(虚拟查询)” x’x’ ,并使用x’x’来计算→符号。在第一个L层之后我们使用由x′计算的→符号来表示向量θ(如Figure 2的左侧部分)。
  • 针对第2个问题,为了解决 计算f(x,θ)f(x,θ)时不依赖S的情况,我们 仅在x 和 → 上执行transformer的前向传播,并且“修补(patch)” 参数向量θ。(如Figure 2的右侧部分)。

image.png

任务与模型 - Tasks and Models

任务:我们一共准备了18项目任务,这些任务一共分为4类:算法、翻译、语言和知识。 为了简单起来,我们限制其为单个token输出。 上表1展示了这些任务中有代表性的任务情况。

更多的试验数据见论文原文

模型:我们使用了多个大语言模型: LLaMA 7B, 13B, and 30B(Touvron et al., 2023), GPT-J 6B (Wang and Komatsuzaki, 2021), and Pythia a 2.8B, 6.9B, and 12B (Biderman et al., 2023)。

探寻L层 - Finding L

在第二章节我们在描述其内部机制时,提到了一个自由参数 —— L层,该层作为A的结束与f的开始。我们使用用(A,f)(A,f)实现对L的不同选择,并通过评估以找到最佳层数。

image.png

更多的显示见论文原文。

图3展示了不同参数的LLaMA模型上,针对L层的不同选择其开发集的准确度。有趣的是,所有的模型在相似的中间层都展示了一个相似的性能峰值,无关模型的参数与层数的多少。

基于假设的预测的准确度 - Accuracy of Hypothesis Based Prediction

接下来,我们将执行ICl的常规的前向传播与 (A, f) 机制的精确度做了比较。模型与任务我们都分别经历了以下三个过程:

  • Regular: LLM在示例集S和查询x的常规应用, 即T([S,x])T([S,x]) 在常规的ICL的
  • Hypothesis:我们根据A和f的机制编写了一套程序,实现了A通过使用虚拟x′(dummy x′)生成 θ认
  • Baseline: LLM仅仅在查询x上进行前向传播,而不需要依赖于 示例集S。 即T([x,→])T([x,→])。 这与我们分离过程中f的应用相同,但并没有修补θ。

image.png

上图显示了每个模型在这3个过程中所有任务的平均精度。完整结果原论文更详细的数据分析及其A.2-表6数据。一切结果表示,我们提出 对A和f的分离为ICL提供了更好的执行过程。

任务向量的鲁棒性 - Robustness of Task Vectors

在我们的设置场景下,θ是来自于 示例集S 和 虚拟x’(dummy query x′)。 检查θ对输入变量的鲁棒性(稳定性)是一个必要事情。正常情况下,如果他表示任务,他应该在不同的S与x′值间保持稳定。为了做上述鲁棒性的测试,我们使用了LLaMA 7B的模型为每一个任务生成50个不同的S和x′的任务向量, 并且进行了如下分析。

Geometry of θ

Figure 5是一个任务向量的t-SNE图, A t-SNE降维图 展示了任务向量形成不同的簇,每个簇包含单个任务的任务向量。论文中的图9将进一步显示了相同类别的任务间的接近性。

image.png

Variability of θ 下图是一个展示任务内部及任务间的距离的直方图。 可以看出同一个任务内与不同任务间的距离更靠近一些。这表明θ在任务中是稳定的,不受x′或S的高度影响。

image.png

θ补丁的优势 - Dominance of θ Patching

image.png

在第三章节,我们讨论了阻止f直接访问S示例集。然后,在ICL期间一个常规的前向传播过程,最后一个token是可以关注到S的。 这里我们验证了这种情况的存在, f主要使用任务向量θ且不直接访问示例集S。 最后我们使用了一对名为A和B的任务,他们共享了输入空间但有不同的输出。我们首先使用了“Regular"的前向传播, 其中我们为模型提供了任务A的示例集S(我们把它表示为SA), 以验证模型可以使用ICl执行该任务。然后我们又进行了"Conflicting"的前向传播, 仍然是SA作为模型任务的数据集, 同时注入θ。

For more details, refer to Fig. 6 in §A.1.

image.png

上表2, 这个"Regular"的前向传播中在任务A中表现了很高的精度,然而这个“Conflicting”的前向传播产在任务B中产生了高精度,该任务对应于注入了向量θ。这意味道着这个任务主要依赖于θ,而忽略了为任务A的示例集S。 我们注意到任务B的准确度较低,可能与图6(Figure 6)的性能下降有关,可能进一步受到S存在的影响。

image.png

对θ的解析 - Interpreting θ

学习到了向量θ直接观地捉了关于示例集S所展示的任务信息。这里我们提供了支持这一解析的证明数据。由于向量θ是transformer的中间隐藏状态,我们可以使用词汇投影法(vocabulary projection method,nostalgebraist,2020;Dar et al. ,2022) 。即,我们检查由隐藏状态引起的分布在词汇表上的顶层token。

下表展示了 LLsMA 13B下三个任务的顶层token.

image.png

更多的请看 论文附 A 中的表7.

在多种情况下,我们观察到能直接描述任务的token。而更重要的是,这些术语从未明确出现在上下文中。例如,在从法译英的任务中,我们观察到诸如“英语”和“翻译”之类的token。这支持了我们的观点,即θ携带了关于任务的重要、非琐碎的语义信息(θ carries significant, non-trivial semantic information about the task)。

结论 Conclusions

本文通过对LLM中ICl的探索,我们为ICL学习机制的供了新的视角。 我们展示了一个简单而优雅的结构:ICL通过将一个给定的训练集压缩为一个单任务向量来发挥作用,用来指导transformer根据给定的查询x去成最优输出。我们的工作为LLM如何执行ICL过程提供了理论阐述,由此我们预测,未来的工作可能会侧重在任务向量如何构建以及如何使用他来评估输出上。

术语中英对照

  • 线性分类器(linear classifier): 通过线性映射,将数据分到对应的类别中。f(xi,W,b)=W∗xi+bf(x**i,W,b)=Wx**i+b, W为权值(weights),b为偏移值(bias vector),x_i为数据。
  • 经验风险最小化(Empirical Risk Minimization ERM): 是统计学习理论中的一个原则,它定义了一系列学习算法,并用于给出其性能的理论界限。

END

如果您也对AI大模型感兴趣想学习却苦于没有方向👀
小编给自己收藏整理好的学习资料分享出来给大家💖
👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码关注免费领取【保证100%免费】🆓
请添加图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉如何学习AI大模型?👈

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

请添加图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

在这里插入图片描述

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

在这里插入图片描述

四、AI大模型商业化落地方案

在这里插入图片描述

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/879381.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

分类预测|2024年最新优化算法鹦鹉优化器PO|基于鹦鹉优化SVM支持向量机数据分类预测Matlab程序PO-SVM

分类预测|2024年最新优化算法鹦鹉优化器PO|基于鹦鹉优化SVM支持向量机数据分类预测Matlab程序PO-SVM 文章目录 一、基本原理**原理****PO-SVM 流程****总结** 二、实验结果三、核心代码四、代码获取五、总结 一、基本原理 PO-SVM 是一种将鹦鹉优化算法(Parrot Opti…

机器学习 第8章 集成学习

目录 个体与集成BoostingBagging与随机森林Bagging随机森林 结合策略平均法投票法学习法 个体与集成 定义:集成学习,也叫多分类器系统、基于委员会的学习等,它是一种通过结合多个学习器来构建一个更强大的学习器的技术。如下图所示 在这里&a…

计算机网络八股总结

这里写目录标题 网络模型划分(五层和七层)及每一层的功能五层网络模型七层网络模型(OSI模型) 三次握手和四次挥手具体过程及原因三次握手四次挥手 TCP/IP协议组成UDP协议与TCP/IP协议的区别Http协议相关知识网络地址,子…

新能源汽车 BMS 学习笔记篇——如何选择继电器 MOS 管作为开关

序:继电器和 MOSFET(俗称 MOS 管)都可以用作 BMS(Battery Management System,电池管理系统) 中控制电池充放电的开关,但它们在原理、结构和特性上存在一些区别,以下总结它们之间主要…

.net core 通过Sqlsugar生成实体

通过替换字符串的方式生成代码&#xff0c;其他代码也可以通这种方式生成 直接上代码 设置模板 将这几个模板文件设置为&#xff1a;嵌入资源 模板内容&#xff1a; using SqlSugar;namespace {Namespace}.Domain.Admin.{ModelName}; /// <summary> /// {TableDisplay…

重学SpringBoot3-SpringApplicationRunListener

更多SpringBoot3内容请关注我的专栏&#xff1a;《SpringBoot3》 期待您的点赞&#x1f44d;收藏⭐评论✍ 重学SpringBoot3-SpringApplicationRunListener 1. 基本作用2. 如何实现2.1. 创建SpringApplicationRunListener2.2. 注册SpringApplicationRunListener2.3. 完整示例 3.…

跨国公司撤出背后的启示:中国IT产业的挑战与机遇

目录 前言 1. 全球化背景下的战略调整 2. 中国IT人才的应对之策 3. 中国IT产业的机遇与挑战 4. 未来的中国IT产业&#xff1a;自主创新与全球化并行 5. 结语 相关推荐 前言 IBM中国近日宣布撤出其在华两大研发中心&#xff0c;这一决定在IT行业内引发了广泛的讨论和思考…

iceoryx共享内存通信

共享内存原理 当POSIX系统中的进程启动时,它会被赋予自己的虚拟地址空间。 虚拟地址空间跨越的范围对于不同的进程可能是相同的,但是在特定地址可访问的数据对于每个进程可能是不同的。 在进程的虚拟地址空间内,有许多“内存区域”用于加载或映射数据。这些内存区域通常是…

MacBook上怎么查找历史复制记录?

你是否经常遇到这样的情况:做内容或方案时,需要用到素材就去找,找到后回来粘贴,然后再去找,再回来粘贴?这个过程是不是很繁琐? 那么找到的素材要不要保存下来呢?每个都存成文件似乎太麻烦了。但如果不单独保存,过两天想再利用又找不到了,怎么办? 在网上看到的一段好文案、…

Centos入门必备基础知识

CentOS&#xff08;Community ENTerprise Operating System&#xff09;是一个开源的Linux发行版&#xff0c;基于Red Hat Enterprise Linux&#xff08;RHEL&#xff09;源代码构建。以下是CentOS入门必备的一些基础知识&#xff1a; 前言 本文由浪浪云赞助发布&#xff0c;…

JavaScript 将 json 美化输出

https://andi.cn/page/621741.html

STM32G474RE之RTC

STM32G474RE之RTC使用HAL库实现RTC时间配置&#xff0c;以及报警配置&#xff0c;支持双路报警。 1、STM32G474RE的RTC晶振引脚&#xff1a; OSC32_IN为PC14&#xff0c;OSC32_OUT为PC15&#xff1b; 2、Vbat引脚 Vbat引脚是用来给外部晶振LSE和备份寄存器提供电源。当没有“…

Android平台RTMP|RTSP播放器如何回调YUV或RGB数据?

技术选型 我们知道&#xff0c;Android平台一般RTMP|RTSP播放器通常不直接提供回调YUV或RGB数据的功能。如果播放端有视觉分析或类似的需求&#xff0c;需要播放端&#xff0c;能支持YUV或ARG的数据回调&#xff0c;一般来说&#xff0c;可参考的方法如下&#xff1a; 1. 使用…

Xcode 16 RC (16A242) 发布下载,正式版下周公布

Xcode 16 RC (16A242) - Apple 平台 IDE IDE for iOS/iPadOS/macOS/watchOS/tvOS/visonOS 请访问原文链接&#xff1a;https://sysin.org/blog/apple-xcode-16/&#xff0c;查看最新版。原创作品&#xff0c;转载请保留出处。 作者主页&#xff1a;sysin.org Xcode 16 的新功…

3D Gaussian Splatting 论文学习

概述 目前比较常见的渲染方法大致可以分为2种&#xff1a; 将场景中的物体投影到渲染平面&#xff1a;传统的渲染管线就是这种方式&#xff0c;主要针对Mesh数据&#xff0c;可以将顶点直接投影成2D的形式&#xff0c;配合光栅化、深度测试、Alpha混合等就可以得到渲染的图像…

如何使用 ONNX 结合 GPU 加速推理(CUDA 与 cuDNN 简明指南)

前言 在深度学习模型推理中,使用 GPU 进行加速是提升模型推理速度的关键方式之一。 本文将带大家一步步了解如何使用 ONNX Runtime 结合 NVIDIA 的 CUDA 和 cuDNN 进行 GPU 加速。 一、查找ONNX、CUDA与cuDNN之间的对应版本 首先,我们需要确保 ONNX Runtime 与 CUDA 和 cu…

量化投资策略_因子打分选股的案例实现

一&#xff1a;因子打分选股的介绍 因子打分选股是一种量化投资策略&#xff0c;它通过选取多个与股票收益率相关的因子&#xff0c;对股票进行综合评分&#xff0c;然后根据评分来选择股票构建投资组合。以下是构建多因子打分选股模型的一般步骤&#xff1a; 数据预处理&…

Redis——常用数据类型hash

目录 hash常用命令hsethgethdelhkeyshvalshgetallhmgethlenhsetnxhincrbyhdecrby 哈希的编码方式哈希的应用 hash 常用命令 hset HSET key field value [field value ...]//时间复杂度O(1) //返回值&#xff1a;设置成功的键值对的个数hget HGET key field//hdel HDEL key…

【SSRF漏洞】——http协议常见绕过

改变的确很难&#xff0c;但结果值得冒险 本文如有错误之处&#xff0c;还请各位师傅指正 一.ssrf概述 SSRF全称为Server-side Request Fogery,中文含义服务器端请求伪造 SSRF是一种由攻击者构造形成由目标服务端发起请求的一个安全漏洞。一般情况下&#xff0c;SSRF攻击的目标…

Linux 防火墙:iptables (二)

文章目录 SNAT 原理与应用SNAT 应用环境SNAT 原理SNAT 转换前提条件SNAT 格式SNAT 转换规则配置 DNAT 原理与应用DNAT 应用环境DNAT 原理DNAT 转换前提条件DNAT 格式DNAT 转换规则配置 iptables 规则的备份和还原导出&#xff08;备份&#xff09;所有表的规则导入&#xff08;…