机器学习 第8章 集成学习

目录

  • 个体与集成
  • Boosting
  • Bagging与随机森林
    • Bagging
    • 随机森林
  • 结合策略
    • 平均法
    • 投票法
    • 学习法

个体与集成

定义:集成学习,也叫多分类器系统、基于委员会的学习等,它是一种通过结合多个学习器来构建一个更强大的学习器的技术。如下图所示在这里插入图片描述
在这里,个体学习器通常由一个现有的学习算法从训练数据产生。集成学习通过整合多个模型的预测结果,可以提高整体的预测准确性和泛化能力。我们希望通过将多个学习器结合在一起能获得比其中任意一个学习器还要好的性能,这是我们要研究的重点,比如举下面一个例子。在这里插入图片描述
遵从少数服从多数原则,在(a)中,每个分类器都只有66.6% 的精度,但集成学习却达到了 100%;在(b)中,三个分类器没有差别,集成之后性能没有提高;在(c)中,每个分类器的精度都只有33.3%,集成学习的结果变得更糟。故要获得好的集成,个体学习器应"好而不同",即要具有"准确性"。
事实上,如何产生并结合"好而不同"的个体学习器,恰是集成学习研究的核心。根据个体学习器的生成方式,目前的集成学习方法大致可分为两大类:第一类是个体学习器问存在强依赖关系、必须串行生成的序列化方法;第二类是个体学习器间不存在强依赖关系、可同时生成的并行化方法。前者的代表是Boosting,后者的代表是Bagging和"随机森林"。下面介绍一下这两者。

Boosting

Boosting是一族集成学习方法,通过顺序训练多个弱学习器,每个弱学习器都尝试修正前一个学习器的错误,从而逐步提高整体模型的性能。
Boosting族算法最著名的代表是AdaBoost,其算法流程如下图所示在这里插入图片描述
Boosting 算法要求基学习器能对特定的数据分布进行学习,这可通过"重赋权法" (re-weighting)实施,即在训练过程的每一轮中,根据样本分布为每个训练样本重新赋予一个权重。若某些样本无法赋权,则对该样本实施“重采样法”,即对训练集重新采样,再对采样后的样本集进行训练。
从偏差–方差分解角度看,Boosting 主要关注降低偏差,因此 Boosting能基于泛化性能相当弱的学习器构建出很强的集成。

Bagging与随机森林

Bagging

Bagging是一种并行集成学习方法,通过随机抽样训练集合构建多个基学习器(具体流程是给定包含m个样本的数据集,我们先随机取出一个样本放入采样集中,再把该样本放回初始数据集,经过m
次随机采样操作,我们得到含m个样本的采样集,照这样,我们可采样出T个含m个训练样本的采样集,然后基于每个采样集训练出一个基学习器,再将这些基学习器进行结合.)然后将它们的预测结果进行平均或投票来得到最终预测( Bagging通常对分类任务使用简单投票法,对回归任务使用简单平均法)。
Bagging算法描述如下:在这里插入图片描述
Bagging是一个很高效的集成学习算法,并且,与标准 AdaBoost 只适用于二分类任务不同,Bagging 能不经修改地用于多分类、回归等任务。

随机森林

随机森林是Bagging的一个典型代表,它在使用决策树作为基学习器的基础上,进一步在决策树的训练过程中引入了随机属性选择。具体来说,在随机森林中,对基决策树的每个结点,先从该结点的属性集合中随机选择一个包含k个属性的子集,然后再从这个子集中选择一个最优属性用于划分。
在这里插入图片描述
从上面图片可以看出,Bagging集成规模越大,其划分效果就相对越好。
随机森林的收敛性与 Bagging相似,如下图所示,随机森林的起始性能往往相对较差, 特别是在集成中只包含一个基学习器时。随着个体学习器数目的增加,随机森林通常会收敛到更低的泛化误差。
在这里插入图片描述

结合策略

学习器结合有如下好处:
(1)从统计的方面来看,结合多个学习器,可以避免相关风险,比如使用单学习器可能因误选而导致泛化性能不佳;
(2)从计算的方面来看,通过多次运行之后进行结合, 可降低陷入糟糕局部极小点的风险;
(3)从表示的方面来看,通过结合多个学习器,由于相应的假设空间有所扩大,有可能学得更好的近似。
下图给出了一个直观示意图:在这里插入图片描述
下面介绍几种对基学习器进行结合的常见策略

平均法

简单平均法:即对所有基学习器的输出进行加和取平均值, H ( x ) = 1 T ∑ i = 1 T h i ( x ) H\left ( x \right ) =\frac{1}{T} \sum_{i=1}^{T} h_{i} \left ( x \right ) H(x)=T1i=1Thi(x)
加权平均法 H ( x ) = ∑ i = 1 T w i h i ( x ) H\left ( x \right ) =\sum_{i=1}^{T} w_{i} h_{i} \left ( x \right ) H(x)=i=1Twihi(x),其中 w i w_{i} wi是个体学习器 h i h_{i} hi,通常要求 w i ≥ 0 w_{i} \ge 0 wi0 ∑ i = 1 T w i = 1 \sum_{i=1}^{T} w_{i} =1 i=1Twi=1
一般而言,在个体学习器性能相差较大时宜使用加权平均法,而在个体学习器性能相近时宜使用简单平均法.

投票法

绝大多数投票法:若某标记得票过半数,则预测为该标记;否则拒绝预测。
相对多数投票法:即预测为得票最多的标记,若同时有多个标记获最高票,则从中随机选取一个。

学习法

当训练数据数量很庞大时,最好使用学习法,即通过另一个学习器来进行结合。其中Stacking是学习法的代表,其流程如下:在这里插入图片描述
Stacking 先从初始数据集训练出初级学习器,然后"生成"一个新数据集用于训练次级学习器。在这个新数据集中,初级学习器的输出被当作样例输入特征,而初始样本的标记仍被当作样例标记。

在训练阶段,次级训练集是利用初级学习器产生的,若直接用初级学习器的训练集来产生次级训练集,则过拟合风险会比较大;因此,一般是通过使用交叉验证或留一法这样的方式,用训练初级学习器未使用的样本来产生次级学习器的训练样本。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/879378.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机网络八股总结

这里写目录标题 网络模型划分(五层和七层)及每一层的功能五层网络模型七层网络模型(OSI模型) 三次握手和四次挥手具体过程及原因三次握手四次挥手 TCP/IP协议组成UDP协议与TCP/IP协议的区别Http协议相关知识网络地址,子…

新能源汽车 BMS 学习笔记篇——如何选择继电器 MOS 管作为开关

序:继电器和 MOSFET(俗称 MOS 管)都可以用作 BMS(Battery Management System,电池管理系统) 中控制电池充放电的开关,但它们在原理、结构和特性上存在一些区别,以下总结它们之间主要…

.net core 通过Sqlsugar生成实体

通过替换字符串的方式生成代码&#xff0c;其他代码也可以通这种方式生成 直接上代码 设置模板 将这几个模板文件设置为&#xff1a;嵌入资源 模板内容&#xff1a; using SqlSugar;namespace {Namespace}.Domain.Admin.{ModelName}; /// <summary> /// {TableDisplay…

重学SpringBoot3-SpringApplicationRunListener

更多SpringBoot3内容请关注我的专栏&#xff1a;《SpringBoot3》 期待您的点赞&#x1f44d;收藏⭐评论✍ 重学SpringBoot3-SpringApplicationRunListener 1. 基本作用2. 如何实现2.1. 创建SpringApplicationRunListener2.2. 注册SpringApplicationRunListener2.3. 完整示例 3.…

跨国公司撤出背后的启示:中国IT产业的挑战与机遇

目录 前言 1. 全球化背景下的战略调整 2. 中国IT人才的应对之策 3. 中国IT产业的机遇与挑战 4. 未来的中国IT产业&#xff1a;自主创新与全球化并行 5. 结语 相关推荐 前言 IBM中国近日宣布撤出其在华两大研发中心&#xff0c;这一决定在IT行业内引发了广泛的讨论和思考…

iceoryx共享内存通信

共享内存原理 当POSIX系统中的进程启动时,它会被赋予自己的虚拟地址空间。 虚拟地址空间跨越的范围对于不同的进程可能是相同的,但是在特定地址可访问的数据对于每个进程可能是不同的。 在进程的虚拟地址空间内,有许多“内存区域”用于加载或映射数据。这些内存区域通常是…

MacBook上怎么查找历史复制记录?

你是否经常遇到这样的情况:做内容或方案时,需要用到素材就去找,找到后回来粘贴,然后再去找,再回来粘贴?这个过程是不是很繁琐? 那么找到的素材要不要保存下来呢?每个都存成文件似乎太麻烦了。但如果不单独保存,过两天想再利用又找不到了,怎么办? 在网上看到的一段好文案、…

Centos入门必备基础知识

CentOS&#xff08;Community ENTerprise Operating System&#xff09;是一个开源的Linux发行版&#xff0c;基于Red Hat Enterprise Linux&#xff08;RHEL&#xff09;源代码构建。以下是CentOS入门必备的一些基础知识&#xff1a; 前言 本文由浪浪云赞助发布&#xff0c;…

JavaScript 将 json 美化输出

https://andi.cn/page/621741.html

STM32G474RE之RTC

STM32G474RE之RTC使用HAL库实现RTC时间配置&#xff0c;以及报警配置&#xff0c;支持双路报警。 1、STM32G474RE的RTC晶振引脚&#xff1a; OSC32_IN为PC14&#xff0c;OSC32_OUT为PC15&#xff1b; 2、Vbat引脚 Vbat引脚是用来给外部晶振LSE和备份寄存器提供电源。当没有“…

Android平台RTMP|RTSP播放器如何回调YUV或RGB数据?

技术选型 我们知道&#xff0c;Android平台一般RTMP|RTSP播放器通常不直接提供回调YUV或RGB数据的功能。如果播放端有视觉分析或类似的需求&#xff0c;需要播放端&#xff0c;能支持YUV或ARG的数据回调&#xff0c;一般来说&#xff0c;可参考的方法如下&#xff1a; 1. 使用…

Xcode 16 RC (16A242) 发布下载,正式版下周公布

Xcode 16 RC (16A242) - Apple 平台 IDE IDE for iOS/iPadOS/macOS/watchOS/tvOS/visonOS 请访问原文链接&#xff1a;https://sysin.org/blog/apple-xcode-16/&#xff0c;查看最新版。原创作品&#xff0c;转载请保留出处。 作者主页&#xff1a;sysin.org Xcode 16 的新功…

3D Gaussian Splatting 论文学习

概述 目前比较常见的渲染方法大致可以分为2种&#xff1a; 将场景中的物体投影到渲染平面&#xff1a;传统的渲染管线就是这种方式&#xff0c;主要针对Mesh数据&#xff0c;可以将顶点直接投影成2D的形式&#xff0c;配合光栅化、深度测试、Alpha混合等就可以得到渲染的图像…

如何使用 ONNX 结合 GPU 加速推理(CUDA 与 cuDNN 简明指南)

前言 在深度学习模型推理中,使用 GPU 进行加速是提升模型推理速度的关键方式之一。 本文将带大家一步步了解如何使用 ONNX Runtime 结合 NVIDIA 的 CUDA 和 cuDNN 进行 GPU 加速。 一、查找ONNX、CUDA与cuDNN之间的对应版本 首先,我们需要确保 ONNX Runtime 与 CUDA 和 cu…

量化投资策略_因子打分选股的案例实现

一&#xff1a;因子打分选股的介绍 因子打分选股是一种量化投资策略&#xff0c;它通过选取多个与股票收益率相关的因子&#xff0c;对股票进行综合评分&#xff0c;然后根据评分来选择股票构建投资组合。以下是构建多因子打分选股模型的一般步骤&#xff1a; 数据预处理&…

Redis——常用数据类型hash

目录 hash常用命令hsethgethdelhkeyshvalshgetallhmgethlenhsetnxhincrbyhdecrby 哈希的编码方式哈希的应用 hash 常用命令 hset HSET key field value [field value ...]//时间复杂度O(1) //返回值&#xff1a;设置成功的键值对的个数hget HGET key field//hdel HDEL key…

【SSRF漏洞】——http协议常见绕过

改变的确很难&#xff0c;但结果值得冒险 本文如有错误之处&#xff0c;还请各位师傅指正 一.ssrf概述 SSRF全称为Server-side Request Fogery,中文含义服务器端请求伪造 SSRF是一种由攻击者构造形成由目标服务端发起请求的一个安全漏洞。一般情况下&#xff0c;SSRF攻击的目标…

Linux 防火墙:iptables (二)

文章目录 SNAT 原理与应用SNAT 应用环境SNAT 原理SNAT 转换前提条件SNAT 格式SNAT 转换规则配置 DNAT 原理与应用DNAT 应用环境DNAT 原理DNAT 转换前提条件DNAT 格式DNAT 转换规则配置 iptables 规则的备份和还原导出&#xff08;备份&#xff09;所有表的规则导入&#xff08;…

PCL 点云基于曲率大小渲染颜色

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 2.2完整代码 三、实现效果 3.1原始点云 3.2处理后点云 PCL点云算法汇总及实战案例汇总的目录地址链接&#xff1a; PCL点云算法与项目实战案例汇总&#xff08;长期更新&#xff09; 一、概…

Django笔记一:搭建Django环境与URL路径访问

博主之前学从Java后端开发&#xff0c;后面获取到读研资格&#xff0c;想着未来转算法岗&#xff0c;初学Python&#xff0c;发现Python还挺有趣的&#xff0c;由于之前所学后端缘故&#xff0c;有点后端情节&#xff0c;想学习一下Django框架&#xff08;python的web框架&…