2.jieba分词用法及原理
1.概述
上篇文章分析了自然语言处理,特别是中文处理中,分词的几个主要难点。为了解决这些难点,提出了基于字符串匹配的算法和基于统计的分词算法。针对当前的几种分词引擎,对其分词准确度和速度进行了评估。jieba分词作为一个开源项目,在准确度和速度方面均不错,是我们平时常用的分词工具。本文将对jieba分词的使用方法以及原理进行讲解,便于在理解jieba分词原理的同时,加深对前文讲解的分词难点和算法的理解。
1.1 特点
Jieba库分词有4种模式,最常用的还是前3种
- 精确模式**:就是把一段文本精确地切分成若干个中文单词,若干个中文单词之间经过组合,就精确地还原为之前的文本。其中不存在冗余单词 **。
- 全模式**:将一段文本中所有可能的词语都扫描出来,可能有一段文本它可以切分成不同的模式,或者有不同的角度来切分变成不同的词语,在全模式下,Jieba库会将各种不同的组合都挖掘出来。分词后的信息再组合起来会有冗余,不再是原来的文本 **。
- 搜索引擎模式**:** 在精确模式基础上,对发现的那些长的词语,我们会对它再次切分,进而适合搜索引擎对短词语的索引和搜索。也有冗余。
- paddle模式:利用PaddlePaddle深度学习框架,训练序列标注(双向GRU)网络模型实现分词。同时支持词性标注。paddle模式使用需安装paddlepaddle-tiny,
pip install paddlepaddle-tiny==1.6.1
。目前paddle模式支持jieba v0.40及以上版本。jieba v0.40以下版本,请升级jieba,pip install jieba --upgrade
。
1.2 安装说明
代码对 Python 2/3 均兼容
- 全自动安装:
easy_install jieba
或者pip install jieba
/pip3 install jieba
- 半自动安装:先下载 http://pypi.python.org/pypi/jieba/ ,解压后运行
python setup.py install
- 手动安装:将 jieba 目录放置于当前目录或者 site-packages 目录
- 通过
import jieba
来引用 - 如果需要使用paddle模式下的分词和词性标注功能,请先安装paddlepaddle-tiny,
pip install paddlepaddle-tiny==1.6.1
。
1.3 算法
- 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG)
- 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合
- 对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法
2.jieba分词用法
jieba分词是一个开源项目,地址为:fxsjy/jieba: 结巴中文分词
它在分词准确度和速度方面均表现不错。其功能和用法如下。
2.1 分词
jieba.cut
方法接受四个输入参数:
- 需要分词的字符串;
cut_all
参数用来控制是否采用全模式;HMM
参数用来控制是否使用 HMM 模型;use_paddle
参数用来控制是否使用paddle模式下的分词模式,paddle模式采用延迟加载方式,通过enable_paddle接口安装paddlepaddle-tiny,并且import相关代码;
jieba.cut_for_search
方法接受两个参数:
- 需要分词的字符串;
- 是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8
jieba.cut
以及 jieba.cut_for_search
返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用
jieba.lcut
以及 jieba.lcut_for_search
直接返回 list
jieba.Tokenizer(dictionary=DEFAULT_DICT)
新建自定义分词器,可用于同时使用不同词典。jieba.dt
为默认分词器,所有全局分词相关函数都是该分词器的映射。
支持三种分词模式
# encoding=utf-8
import jiebaseg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print("Full Mode: " + "/ ".join(seg_list)) # 全模式seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print("Default Mode: " + "/ ".join(seg_list)) # 精确模式seg_list = jieba.cut("他来到了网易杭研大厦") # 默认是精确模式
print(", ".join(seg_list))seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
print(", ".join(seg_list))
输出为
【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学【精确模式】: 我/ 来到/ 北京/ 清华大学【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
2.2 添加自定义词典
- 开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率
- 用法:
jieba.load_userdict(file_name)
, file_name 为文件类对象或自定义词典的路径 - 词典格式和
dict.txt
一样,一个词占一行;每一行分三部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。file_name
若为路径或二进制方式打开的文件,则文件必须为 UTF-8 编码。 - 词频省略时使用自动计算的能保证分出该词的词频。
使用起来很简单,我们先创建一个文件,比如user_dict.txt
,其中每一行代表一个新词,分别为词语,词频,词性。如下:
创新办 3 i
云计算 5
凱特琳 nz
台中
然后在代码中分词前,加载这个自定义词典即可。更改分词器(默认为 jieba.dt
)的 tmp_dir
和 cache_file
属性,可分别指定缓存文件所在的文件夹及其文件名,用于受限的文件系统。
jieba.load_userdict("user_dict.txt")
加载自定义词典的分词效果:
之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
2.3 调整词典
- 使用
add_word(word, freq=None, tag=None)
和del_word(word)
可在程序中动态修改词典。 - 使用
suggest_freq(segment, tune=True)
可调节单个词语的词频,使其能(或不能)被分出来。 - 注意:自动计算的词频在使用 HMM 新词发现功能时可能无效。
# 1 使用del_word()使得某个词语不会出现
print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
如果/放到/post/中将/出错/。jieba.del_word("中将")
print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
如果/放到/post/中/将/出错/。# 2 使用add_word()添加新词到字典中
print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
「/台/中/」/正确/应该/不会/被/切开jieba.add_word("台中")
print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
「/台中/」/正确/应该/不会/被/切开# 3 使用suggest_freq()调整某个词语的词频,使得其在设置的词频高是能分出,词频低时不能分出
jieba.suggest_freq('台中', True)
69
print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
「/台中/」/正确/应该/不会/被/切开
2.4 关键词提取
关键词提取,将文本中最能表达文本含义的词语抽取出来,有点类似于论文的关键词或者摘要。关键词抽取可以采取:
(1)基于TF-IDF的关键词抽取算法
目标是获取文本中词频高,也就是TF大的,且语料库其他文本中词频低的,也就是IDF大的。这样的词可以作为文本的标志,用来区分其他文本。
API函数
jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())
sentence
为待提取的文本topK
为返回几个 TF/IDF 权重最大的关键词,默认值为 20withWeight
为是否一并返回关键词权重值,默认值为 FalseallowPOS
仅包括指定词性的词,默认值为空,即不筛选
jieba.analyse.TFIDF(idf_path=None)
,新建 TFIDF 实例,idf_path
为 IDF 频率文件
代码示例
from jieba import analyse
# 引入TF-IDF关键词抽取接口
tfidf = analyse.extract_tags# 原始文本
text = "线程是程序执行时的最小单位,它是进程的一个执行流,\是CPU调度和分派的基本单位,一个进程可以由很多个线程组成,\线程间共享进程的所有资源,每个线程有自己的堆栈和局部变量。\线程由CPU独立调度执行,在多CPU环境下就允许多个线程同时运行。\同样多线程也可以实现并发操作,每个请求分配一个线程来处理。"# 基于TF-IDF算法进行关键词抽取
keywords = tfidf(text)
print "keywords by tfidf:"
# 输出抽取出的关键词
for keyword in keywords:print keyword + "/",# 输出为:
keywords by tfidf:
线程/ CPU/ 进程/ 调度/ 多线程/ 程序执行/ 每个/ 执行/ 堆栈/ 局部变量/ 单位/ 并发/ 分派/ 一个/ 共享/ 请求/ 最小/ 可以/ 允许/ 分配/
(2)基于TextRank的关键词抽取算法
- 先将文本进行分词和词性标注,将特定词性的词(比如名词)作为节点添加到图中。
- 出现在一个窗口中的词语之间形成一条边,窗口大小可设置为2~10之间,它表示一个窗口中有多少个词语。
- 对节点根据入度节点个数以及入度节点权重进行打分,入度节点越多,且入度节点权重大,则打分高。
- 然后根据打分进行降序排列,输出指定个数的关键词。
API函数
jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v'))
直接使用,接口相同,注意默认过滤词性。jieba.analyse.TextRank()
新建自定义 TextRank 实例- 算法论文: TextRank: Bringing Order into Texts
代码示例
from jieba import analyse
# 引入TextRank关键词抽取接口
textrank = analyse.textrank# 原始文本
text = "线程是程序执行时的最小单位,它是进程的一个执行流,\是CPU调度和分派的基本单位,一个进程可以由很多个线程组成,\线程间共享进程的所有资源,每个线程有自己的堆栈和局部变量。\线程由CPU独立调度执行,在多CPU环境下就允许多个线程同时运行。\同样多线程也可以实现并发操作,每个请求分配一个线程来处理。"print "\nkeywords by textrank:"
# 基于TextRank算法进行关键词抽取
keywords = textrank(text)
# 输出抽取出的关键词
for keyword in keywords:print keyword + "/",# 输出为:
keywords by textrank:
线程/ 进程/ 调度/ 单位/ 操作/ 请求/ 分配/ 允许/ 基本/ 共享/ 并发/ 堆栈/ 独立/ 执行/ 分派/ 组成/ 资源/ 实现/ 运行/ 处理/
2.5 词性标注
利用jieba.posseg
模块来进行词性标注,会给出分词后每个词的词性。词性标示兼容ICTCLAS 汉语词性标注集,可查阅网站
API函数
jieba.posseg.POSTokenizer(tokenizer=None)
新建自定义分词器,tokenizer
参数可指定内部使用的jieba.Tokenizer
分词器。jieba.posseg.dt
为默认词性标注分词器。- 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法。
- 除了jieba默认分词模式,提供paddle模式下的词性标注功能。paddle模式采用延迟加载方式,通过
enable_paddle()
安装paddlepaddle-tiny
,并且import相关代码;
代码示例
import jieba.posseg as pseg
words = pseg.cut("我爱北京天安门")
for word, flag in words:
... print('%s %s' % (word, flag))
...
我 r # 代词
爱 v # 动词
北京 ns # 名词
天安门 ns # 名词
paddle模式词性标注对应表如下:
paddle模式词性和专名类别标签集合如下表,其中词性标签 24 个(小写字母),专名类别标签 4 个(大写字母)。
标签 | 含义 | 标签 | 含义 | 标签 | 含义 | 标签 | 含义 |
---|---|---|---|---|---|---|---|
n | 普通名词 | f | 方位名词 | s | 处所名词 | t | 时间 |
nr | 人名 | ns | 地名 | nt | 机构名 | nw | 作品名 |
nz | 其他专名 | v | 普通动词 | vd | 动副词 | vn | 名动词 |
a | 形容词 | ad | 副形词 | an | 名形词 | d | 副词 |
m | 数量词 | q | 量词 | r | 代词 | p | 介词 |
c | 连词 | u | 助词 | xc | 其他虚词 | w | 标点符号 |
PER | 人名 | LOC | 地名 | ORG | 机构名 | TIME | 时间 |
2.6 并行分词
将文本按行分隔后,每行由一个jieba分词进程处理,之后进行归并处理,输出最终结果。这样可以大大提高分词速度。
原理:将目标文本按行分隔后,把各行文本分配到多个 Python 进程并行分词,然后归并结果,从而获得分词速度的可观提升
基于 python 自带的 multiprocessing 模块,目前暂不支持 Windows
用法:
jieba.enable_parallel(4)
# 开启并行分词模式,参数为并行进程数jieba.disable_parallel()
# 关闭并行分词模式
jieba.enable_parallel(4) # 开启并行分词模式,参数为并行进程数
jieba.disable_parallel() # 关闭并行分词模式
实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。
注意:并行分词仅支持默认分词器 jieba.dt
和 jieba.posseg.dt
。
2.7 Tokenize:返回词语在原文的起止位置
注意,输入参数只接受 unicode
默认模式
result = jieba.tokenize(u'永和服装饰品有限公司')
for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))# 输出为
word 永和 start: 0 end:2
word 服装 start: 2 end:4
word 饰品 start: 4 end:6
word 有限公司 start: 6 end:10
搜索模式
result = jieba.tokenize(u'永和服装饰品有限公司', mode='search')
for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))# 输出为
word 永和 start: 0 end:2
word 服装 start: 2 end:4
word 饰品 start: 4 end:6
word 有限 start: 6 end:8
word 公司 start: 8 end:10
word 有限公司 start: 6 end:10
2.8 命令模式
使用示例:python -m jieba news.txt > cut_result.txt
命令行选项(翻译)
使用: python -m jieba [options] filename结巴命令行界面。固定参数:filename 输入文件可选参数:-h, --help 显示此帮助信息并退出-d [DELIM], --delimiter [DELIM]使用 DELIM 分隔词语,而不是用默认的' / '。若不指定 DELIM,则使用一个空格分隔。-p [DELIM], --pos [DELIM]启用词性标注;如果指定 DELIM,词语和词性之间用它分隔,否则用 _ 分隔-D DICT, --dict DICT 使用 DICT 代替默认词典-u USER_DICT, --user-dict USER_DICT使用 USER_DICT 作为附加词典,与默认词典或自定义词典配合使用-a, --cut-all 全模式分词(不支持词性标注)-n, --no-hmm 不使用隐含马尔可夫模型-q, --quiet 不输出载入信息到 STDERR-V, --version 显示版本信息并退出如果没有指定文件名,则使用标准输入。
--help
选项输出:
$> python -m jieba --help
Jieba command line interface.positional arguments:filename input fileoptional arguments:-h, --help show this help message and exit-d [DELIM], --delimiter [DELIM]use DELIM instead of ' / ' for word delimiter; or aspace if it is used without DELIM-p [DELIM], --pos [DELIM]enable POS tagging; if DELIM is specified, use DELIMinstead of '_' for POS delimiter-D DICT, --dict DICT use DICT as dictionary-u USER_DICT, --user-dict USER_DICTuse USER_DICT together with the default dictionary orDICT (if specified)-a, --cut-all full pattern cutting (ignored with POS tagging)-n, --no-hmm don't use the Hidden Markov Model-q, --quiet don't print loading messages to stderr-V, --version show program's version number and exitIf no filename specified, use STDIN instead.
2.9 延迟加载机制
jieba 采用延迟加载,import jieba
和 jieba.Tokenizer()
不会立即触发词典的加载,一旦有必要才开始加载词典构建前缀字典。如果你想手工初始 jieba,也可以手动初始化。
import jieba
jieba.initialize() # 手动初始化(可选)
3.jieba分词源码结构
分词的jieba源码版本为0.39。代码结构如下
主要的模块如下
- 基本API的封装,在Tokenizer类中,相当于一个外观类。如
cut
del_word
add_word
enable_parallel initialize
等 - 基于字符串匹配的分词算法,包含一个很大很全的词典,即
dict.txt
文件 - 基于统计的分词算法,实现了HMM隐马尔科夫模型。jieba分词使用了字符串分词和统计分词,结合了二者的优缺点。
- 关键词提取,实现了TFIDF和TextRank两种无监督学习算法
- 词性标注,实现了HMM隐马尔科夫模型和viterbi算法
4.jieba分词原理分析
jieba分词综合了基于字符串匹配的算法和基于统计的算法,其分词步骤为
- 初始化。加载词典文件,获取每个词语和它出现的词数
- 切分短语。利用正则,将文本切分为一个个语句,之后对语句进行分词
- 构建DAG。通过字符串匹配,构建所有可能的分词情况的有向无环图,也就是DAG
- 构建节点最大路径概率,以及结束位置。计算每个汉字节点到语句结尾的所有路径中的最大概率,并记下最大概率时在DAG中对应的该汉字成词的结束位置。
- 构建切分组合。根据节点路径,得到词语切分的结果,也就是分词结果。
- HMM新词处理:对于新词,也就是dict.txt中没有的词语,通过统计方法来处理,jieba中采用了HMM隐马尔科夫模型来处理。
- 返回分词结果:通过yield将上面步骤中切分好的词语逐个返回。yield相对于list,可以节约存储空间。
4.1 初始化
词典是基于字符串匹配的分词算法的关键所在,决定了最终分词的准确度。jieba词典dict.txt是jieba作者采集了超大规模的语料数据,统计得到的。有5M,包含349,046条词语。每一行对应一个词语,包含词语 词数 词性三部分。如下
凤凰寺 22 ns
凤凰山 311 ns
凤凰岭 15 ns
凤凰岭村 2 ns
凤凰木 3 ns
初始化时,先加载词典文件dict.txt,遍历每一行,生成词语-词数的键值对和总词数,并将生成结果保存到cache中,下次直接从cache中读取即可。代码如下,删除了无关的log打印。只需要看关键节点代码即可,不提倡逐行逐行阅读代码,最重要的是理解代码执行的主要流程和关键算法。
def initialize(self, dictionary=None):# 获取词典路径if dictionary:abs_path = _get_abs_path(dictionary)if self.dictionary == abs_path and self.initialized:returnelse:self.dictionary = abs_pathself.initialized = Falseelse:abs_path = self.dictionarywith self.lock:try:with DICT_WRITING[abs_path]:passexcept KeyError:passif self.initialized:return# 获取cache_filedefault_logger.debug("Building prefix dict from %s ..." % (abs_path or 'the default dictionary'))t1 = time.time()if self.cache_file:cache_file = self.cache_file# default dictionaryelif abs_path == DEFAULT_DICT:cache_file = "jieba.cache"# custom dictionaryelse:cache_file = "jieba.u%s.cache" % md5(abs_path.encode('utf-8', 'replace')).hexdigest()cache_file = os.path.join(self.tmp_dir or tempfile.gettempdir(), cache_file)# prevent absolute path in self.cache_filetmpdir = os.path.dirname(cache_file)# 加载cache_fileload_from_cache_fail = Trueif os.path.isfile(cache_file) and (abs_path == DEFAULT_DICT oros.path.getmtime(cache_file) > os.path.getmtime(abs_path)):try:with open(cache_file, 'rb') as cf:self.FREQ, self.total = marshal.load(cf)load_from_cache_fail = Falseexcept Exception:load_from_cache_fail = True# cache_file不存在或者加载失败时,加载原始词典if load_from_cache_fail:wlock = DICT_WRITING.get(abs_path, threading.RLock())DICT_WRITING[abs_path] = wlockwith wlock:# 加载原始词典,得到每个词与其词数的键值对,以及总词数。单个词数除以总词数,即可计算词频self.FREQ, self.total = self.gen_pfdict(self.get_dict_file())try:# 保存加载的原始词典到cache_file中fd, fpath = tempfile.mkstemp(dir=tmpdir)with os.fdopen(fd, 'wb') as temp_cache_file:marshal.dump((self.FREQ, self.total), temp_cache_file)_replace_file(fpath, cache_file)except Exception:try:del DICT_WRITING[abs_path]except KeyError:passself.initialized = True# 加载原始词典def gen_pfdict(self, f):lfreq = {}ltotal = 0f_name = resolve_filename(f)# 遍历词典每一行,一行包含一个词,词数,以及词性for lineno, line in enumerate(f, 1):try:line = line.strip().decode('utf-8')# 取出词语和它的词数word, freq = line.split(' ')[:2]freq = int(freq)# 将词语和它的词数构造成键值对lfreq[word] = freq# 计算总词数,这个是为了以后计算某个词的词频,词频越大,则改词出现的概率越大ltotal += freq# 遍历词语中的每个字,如果该字没有出现在词典中,则建立其词语-词数键值对,词数设置为0for ch in xrange(len(word)):wfrag = word[:ch + 1]if wfrag not in lfreq:lfreq[wfrag] = 0except ValueError:raise ValueError('invalid dictionary entry in %s at Line %s: %s' % (f_name, lineno, line))f.close()# 返回词语-词数的键值对,以及总词数return lfreq, ltotal
初始化可以简单理解为,读取词典文件,构建词语-词数键值对,方便后面步骤中查词典,也就是字符串匹配。
4.2. 切分短语
使用汉字正则,切分出连续的汉字和英文字符,形成一段段短语。可以理解为以空格 逗号 句号为分隔,将输入文本切分为一个个短语,之后会基于一个个短语来分词。代码如下
def cut(self, sentence, cut_all=False, HMM=True):# 编码转换,utf-8或gbksentence = strdecode(sentence)# 根据是否全模式,以及是否采用HMM隐马尔科夫,来设置正则re_han re_skip,以及cut_blockif cut_all:re_han = re_han_cut_allre_skip = re_skip_cut_allelse:re_han = re_han_defaultre_skip = re_skip_defaultif cut_all:cut_block = self.__cut_allelif HMM:cut_block = self.__cut_DAGelse:cut_block = self.__cut_DAG_NO_HMM# 将输入文本按照空格 逗号 句号等字符进行分割,生成一个个语句子串blocks = re_han.split(sentence)# 遍历语句子串for blk in blocks:if not blk:continueif re_han.match(blk):# 对语句进行分词for word in cut_block(blk):yield wordelse:tmp = re_skip.split(blk)for x in tmp:if re_skip.match(x):yield xelif not cut_all:for xx in x:yield xxelse:yield x
- 首先进行将语句转换为UTF-8或者GBK。
- 然后根据用户指定的模式,设置cut的真正实现。
- 然后根据正则,将输入文本分为一个个语句。
- 最后遍历语句,对每个语句单独进行分词。
4.3 构建DAG
下面我们来分析默认模式,也就是精确模式下的分词过程。先来看__cut_DAG
方法。
def __cut_DAG(self, sentence):# 得到语句的有向无环图DAGDAG = self.get_DAG(sentence)# 动态规划,计算从语句末尾到语句起始,DAG中每个节点到语句结束位置的最大路径概率,以及概率最大时节点对应词语的结束位置route = {}self.calc(sentence, DAG, route)x = 0buf = ''N = len(sentence)while x < N:# y表示词语的结束位置,x为词语的起始位置y = route[x][1] + 1# 从起始位置x到结束位置y,取出一个词语l_word = sentence[x:y]if y - x == 1:# 单字,一个汉字构成的一个词语buf += l_wordelse:# 多汉字词语if buf:if len(buf) == 1:yield bufbuf = ''else:if not self.FREQ.get(buf):# 词语不在字典中,也就是新词,使用HMM隐马尔科夫模型进行分割recognized = finalseg.cut(buf)for t in recognized:yield telse:for elem in buf:yield elembuf = ''yield l_word# 该节点取词完毕,跳到下一个词语的开始位置x = y# 通过yield,逐词返回上一步切分好的词语if buf:if len(buf) == 1:yield bufelif not self.FREQ.get(buf):recognized = finalseg.cut(buf)for t in recognized:yield telse:for elem in buf:yield elem
主体步骤如下
- 得到语句的有向无环图DAG
- 动态规划构建Route,计算从语句末尾到语句起始,DAG中每个节点到语句结束位置的最大路径概率,以及概率最大时节点对应词语的结束位置
- 遍历每个节点的Route,组装词语组合。
- 如果词语不在字典中,也就是新词,使用HMM隐马尔科夫模型进行分割
- 通过yield将词语逐个返回。
下面我们来看构建DAG的过程。先遍历一个个切分好的短语,对这些短语来进行分词。首先要构建短语的有向无环图DAG。查词典进行字符串匹配的过程中,可能会出现好几种可能的切分方式,将这些组合构成有向无环图,如下图所示
可以看到,构成了两条路径:
DAG中记录了某个词的开始位置和它可能的结束位置。开始位置作为key,结束位置是一个list。比如位置0的DAG表达为 {0: [1, 2]}
, 也就是说0位置为词的开始位置时,1,2位置都有可能是词的结束位置。上面语句的完整DAG为
{0: [1, 2],1: [2, 3],2: [3],3: [4, 5],4: [5]
}
DAG构建过程的代码如下:
# 获取语句的有向无环图
def get_DAG(self, sentence):self.check_initialized()DAG = {}N = len(sentence)for k in xrange(N):tmplist = []i = kfrag = sentence[k]while i < N and frag in self.FREQ:if self.FREQ[frag]:tmplist.append(i)i += 1frag = sentence[k:i + 1]if not tmplist:tmplist.append(k)DAG[k] = tmplistreturn DAG
4.4 构建节点最大路径概率,以及结束位置
中文一般形容词在前面,而相对来说更关键的名词和动词在后面。考虑到这一点,jieba中对语句,从右向左反向计算路径的最大概率,这个类似于逆向最大匹配。每个词的概率 = 字典中该词的词数 / 字典总词数
。对于上图构建每个节点的最大路径概率的过程如下:
p(5)= 1,
p(4)= max(p(5) * p(4->5)),
p(3)= max(p(4) * p(4->5), p(5) * p(3->5)), # 对于节点3,他有3->4, 3->5两条路径,我们取概率最大的路径作为节点3的路径概率,并记下概率最大时节点3的结束位置
p(2) = max(p(3) * p(2->3))
p(1) = max(p(2) * p(1->2), p(3) * p(1->3))
p(0) = max(p(1) * p(0->1), p(2) * p(0->2))
对应代码如下
def calc(self, sentence, DAG, route):N = len(sentence)route[N] = (0, 0)logtotal = log(self.total)for idx in xrange(N - 1, -1, -1):# route[idx] = (该汉字到最后一个汉字的最大路径概率, 最大路径概率时该汉字对应的词语结束位置)# 遍历DAG中该汉字节点的结束位置,也就是DAG[idx],计算idx到x之间构成的词语的概率,然后乘以x到语句结束位置的最大概率,即可得到idx到语句结束的路径最大概率route[idx] = max((log(self.FREQ.get(sentence[idx:x + 1]) or 1) - logtotal + route[x + 1][0], x) for x in DAG[idx])
4.5 构建切分组合
从节点0开始,按照步骤4中构建的最大路径概率以及结束位置,取出节点0的结束位置,构成词语。如果是单字词语,则直接通过yield返回。如果词语在字典中,也直接通过yield返回。如果词语不在字典中,也就是新词,则需要通过HMM隐马尔科夫模型来分割。节点0处理完毕,则跳到下一个词语的开始处进行处理,直至到达语句末尾。
代码参见__cut_DAG()
,也就是主体流程代码。
4.6 HMM新词处理
对于新词,也就是dict.txt
中没有的词语,通过统计方法来处理,jieba中采用了HMM隐马尔科夫模型。回顾下HMM的五要素:观测序列,隐藏序列,发射概率,起始概率,转移概率。由这五大要素可以对短语建模。
通过语料大规模训练,可以得到发射概率,起始概率和转移概率。通过viterbi算法,可以得到概率最大的隐藏序列,也就是 BEMS标注序列,通过BEMS就可以对语句进行分词了。观察发现,新词被分成二字词语的概率很大。
转移概率在prob_trans.py
中,如下
P={'B': {'E': -0.510825623765990, 'M': -0.916290731874155}, # exp后为概率,此处为{'E': 0.6, 'M': 0.4}'E': {'B': -0.5897149736854513, 'S': -0.8085250474669937},'M': {'E': -0.33344856811948514, 'M': -1.2603623820268226},'S': {'B': -0.7211965654669841, 'S': -0.6658631448798212}}
起始概率在prob_start.py
中,如下
P={'B': -0.26268660809250016,'E': -3.14e+100,'M': -3.14e+100,'S': -1.4652633398537678}# exp后为概率,此处为{'B': 0.769, 'E': 0, 'M': 0, 'S': 0.231}
隐马尔科夫模型处理代码主要为
# 通过HMM隐马尔科夫模型获取语句的BEMS序列标注,并通过它来进行分词
def __cut(sentence):global emit_P# 通过viterbi算法和start_P, trans_P, emit_P三个训练好的概率,得到语句对应的BEMS序列标注prob, pos_list = viterbi(sentence, 'BMES', start_P, trans_P, emit_P)begin, nexti = 0, 0# 得到分词结果。根据上面得到pos_list, 也就是语句对应的BEMS序列,来对原始语句进行分词。for i, char in enumerate(sentence):pos = pos_list[i]if pos == 'B':# 词语开始begin = ielif pos == 'E':# 词语结束,可以根据begin开始位置来返回分词词语了yield sentence[begin:i + 1]nexti = i + 1elif pos == 'S':# 单字词语,直接返回yield charnexti = i + 1# 理论上不会走到下面这儿,只是以防万一if nexti < len(sentence):yield sentence[nexti:]
viterbi算法的代码如下
# 通过viterbi算法,由观测序列,也就是语句,来得到隐藏序列,也就是BEMS标注序列
# obs为语句,states为"BEMS"四种状态,
# start_p为起始概率, trans_p为转移概率, emit_p为发射概率,三者通过语料训练得到
def viterbi(obs, states, start_p, trans_p, emit_p):V = [{}] # 每个汉字的每个BEMS状态的最大概率。path = {} # 分词路径# 初始化每个state,states为"BEMS"for y in states:V[0][y] = start_p[y] + emit_p[y].get(obs[0], MIN_FLOAT)path[y] = [y]# 逐字进行处理for t in xrange(1, len(obs)):V.append({})newpath = {}# 遍历每个状态for y in states:# 得到某状态到某个字的发射概率em_p = emit_p[y].get(obs[t], MIN_FLOAT)# 计算前一个状态到本状态的最大概率和它的前一个状态(prob, state) = max([(V[t - 1][y0] + trans_p[y0].get(y, MIN_FLOAT) + em_p, y0) for y0 in PrevStatus[y]])# 将该汉字下的某状态(BEMS)的最大概率记下来V[t][y] = prob# 记录状态转换路径newpath[y] = path[state] + [y]path = newpath# 尝试合并ES两种状态,因为ES经常可以组成一个完整词语(prob, state) = max((V[len(obs) - 1][y], y) for y in 'ES')# 返回语句的BEMS序列return (prob, path[state])
4.7 返回分词结果
通过yield将上面步骤中切分好的词语逐个返回。yield相对于list,可以节约存储空间。
5.总结
jiaba分词是一款十分优秀的开源分词引擎,它结合了基于字符串匹配的算法和基于统计的算法。使用最大概率路径动态规划算法,进行字符串匹配,可以在分词速度快的同时,保持较高的分词精度。使用HMM隐马尔科夫模型对新词进行分词,可以有效解决字符串匹配无法识别新词的难点。阅读它的源码有利于我们加深对分词难点和算法的理解,也能加深对HMM隐马尔卡尔模型这种常用的机器学习算法的理解。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓