【深度学习】线性回归的从零开始实现与简洁实现

前言

我原本后面打算用李沐老师那本《动手学深度学习》继续“抄书”,他们团队也免费提供了电子版(https://zh-v2.d2l.ai/d2l-zh-pytorch.pdf)。但书里涉及到代码,一方面展示起来不太方便,另一方面我自己也有很多地方看不太懂。

这让我开始思考起我“抄书”的意义了。如果都是文字,我感觉抄起来可以加深印象,在抄的同时理解并思考。

但是如果涉及到代码,我没办法在抄的时候就能理解,就能很顺畅地把代码解释出来。需要自己先去调试一遍,才能心安理得地介绍起来。

于是,我开始停止自己看书,打算先去看看视频。土堆的视频先从加载数据讲起,然后是 TensorBoard,我感觉和前面学到的训练/测试什么的,根本没关系,也不知道为什么要讲这些,就听不下去了,想着先去看看实操。

然后我到看刘二大人的教程,他先讲线性模型和梯度下降等等的原理,再上代码实操,看起来就比较舒服。我把他的代码自己敲了一遍,虽说能跑起来,但还是存在很多疑惑。

控制台不停地打印着训练轮数和损失,看起来有点样子,但是不直观。我想着要是能把训练过程中的 loss 作图出来就好。虽说可以利用 python 的作图包绘制,但我感觉应该会有专门的工具来实现。

我上网搜了下,发现 pytorch 就自带了 tensorboard 这个工具可以可视化训练过程。哎,这不就是土堆视频里讲的那个么。我就又老老实实去看土堆的视频了。

经过这些过程,我早已经变得很挫败,甚至感觉自己不是学这个的料。东看一点,西看一点,最后还是回到了李沐老师的书上。

我感觉自已经走了很多弯路,《动手学深度学习》这本书里最前面一章就是介绍预备知识,我嫌繁琐,跳过没看,直接看后面的内容,但我又看不懂,又要倒回去重新看预备知识,这样就会产生很多挫败情绪。

虽说经过这几天折腾,隐隐约约学到了一些东西,但显然是划不来的。我以后就老老实实跟着李沐老师,先认认真真搞懂基础的几个模型,不去担心可能学了以后用不到之类的问题,之后再重点看看自己导师研究的方向。

下面我们从线性回归开始,先介绍它的关键思想,然后手动实现它,体会这一过程,再借助 pytorch 来实现。

通过对比这两种方式,可以更好地理解 pytorch 的用法。

一、线性回归关键思想

回归(regression)是能为一个或多个自变量与因变量之间关系建模的一类方法。在自然科学和社会科学领域,回归经常用来表示输入和输出之间的关系。

线性回归(linear regression)指输入 x \pmb{x} x 和输出 y y y 之间的关系是线性的,即 y y y 可以表示为 x \pmb{x} x 中元素的加权和,如下式: y = w 1 ⋅ x 1 + w 2 ⋅ x 2 + b . y=w_1\cdot x_{1}+w_{2}\cdot x_{2}+b. y=w1x1+w2x2+b. 其中, w 1 w_{1} w1 w 2 w_{2} w2 称为权重,其决定了每个 x x x y y y 的影响; b b b 称为偏置(bias)。

偏置是指当所有 x x x 都取 0 时,输出值应该为多少。如果没有偏置项,模型的表达能力将受到限制。

给定一个数据集,我们的目标是寻找模型的权重 w \pmb{w} w 和偏置 b b b,使得根据模型做出的预测大体符合真实情况。

在开始寻找最好的模型参数(model parameters)前,我们还需要两个东西:

  • 一种模型质量的度量方式;(怎么判断这个模型好不好?)
  • 一种能够更新模型以提高模型质量的方法。(如果模型质量不太行,怎么提高?)

损失函数(模型质量度量方式)

损失函数(loss function)能够量化目标的实际值与预测值之间的差距。通常我们会选择非负数作为损失,且数值越小表示损失越小。

回归问题中最常用的损失函数是平方误差函数。

可以想想我们以前学直线拟合时的最小二乘法。

随机梯度下降(提高模型质量方法)

梯度下降(gradient descent)通过不断地在损失函数递减的方向上更新参数来降低误差。

其最简单的方法是计算损失函数(所有样本的损失均值)关于模型参数的导数。但实际中的执行可能会非常慢:

因为在每一次更新参数前,我们必须遍历整个数据集。因此,我们通常会在每次需要计算更新的时候随机抽取一小批样本,这种变体称为小批量随机梯度下降(minibatch stochastic gradient descent)。

在每次迭代中,我们首先随机抽样一个小批量 B B B,它是又固定数量的训练样本组成。然后,我们计算小批量的平均损失关于模型参数的导数。最后,我们将梯度乘以一个预先确定的正数 η \eta η,并从当前参数的值中减掉。

总结起来,算法的步骤为:

  1. 初始化模型参数;
  2. 从数据集中随机抽取小批量样本且在负梯度的方向上更新参数,并不断迭代这一步骤。

正态分布与平方损失

正态分布和线性回归之间的关系很密切。正态分布(normal distribution),也称为高斯分布(Gaussian distribution),最早由德国数学家高斯(Gauss)应用于天文学研究。

简单地说,若随机变量 X X X 具有均值 μ \mu μ 和方差 σ 2 \sigma^2 σ2,其正态概率密度函数为: p ( x ) = 1 2 π σ 2 exp ⁡ ( − 1 2 σ 2 ( x − μ ) 2 ) . p(x)=\frac{1}{\sqrt{2\pi\sigma^2}}\exp\bigg(-\frac{1}{2\sigma^2}(x-\mu)^2\bigg). p(x)=2πσ2 1exp(2σ21(xμ)2). 正态分布的可视化图像如下图所示。改变均值会产生沿 x x x 轴的偏移,增加方差将会分散分布、降低其峰值。

不同参数的正态分布图像

均方误差损失函数可以用于线性回归的一个原因是:我们假设了观测中包含噪声,其中噪声服从正态分布。

在高斯噪声的假设下,最小化均方误差等价于对线性模型的极大似然估计。

二、线性回归的从零开始实现

导入的包有:

import random
import torch
import matplotlib.pyplot as plt

生成数据集

我们可以自己用带有噪声的线性模型生成一系列数据,通过优化算法不断减小损失,最终尽可能恢复用来生成数据的参数。

例如,用 y = 2 x 1 − 3.4 x 2 + 4.2 + ϵ y=2x_1-3.4x_2+4.2+\epsilon y=2x13.4x2+4.2+ϵ 来生成一系列数据点,其中 ϵ \epsilon ϵ 服从均值为 0,标准差为 0.01 的正态分布。

为提高计算性能,我们可以用矩阵进行表示,即 [ y 1 y 2 ⋮ y n ] = [ x 1 x 2 x 1 x 2 ⋯ ⋯ x 1 x 2 ] n × 2 [ 2 − 3.4 ] + 4.2 + ϵ \begin{bmatrix} y_1 \\\ y_2 \\\ \vdots \\\ y_n \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \\\ x_1 & x_2 \\\ \cdots & \cdots \\\ x_1 & x_2 \end{bmatrix}_{n\times 2} \begin{bmatrix} 2 \\\ -3.4 \end{bmatrix}+4.2+\epsilon y1 y2  yn = x1 x1  x1x2x2x2 n×2[2 3.4]+4.2+ϵ 后面两项常数项可以看成 n × 1 n\times1 n×1 的矩阵,由于张量具有广播机制,可以直接相加。

生成数据并可视化 y y y x 2 x_2 x2 关系的代码如下:

import torch
import matplotlib.pyplot as pltnum_samples = 1000  # 生成的数据点个数
# 原模型的两个参数
w_true = torch.tensor([2, -3.4])
b_true = 4.2
# 设置随机种子,方便验证和复现
random_seed = 326
torch.manual_seed(random_seed)
# 随机生成自变量
X = torch.randn((num_samples, len(w_true)))
# 生成不含噪声的 y
y = torch.matmul(X, w_true) + b_true
# 生成带有噪声的y
y += torch.normal(0, 0.01, y.shape)
# 绘制数据点,看看长什么样
# 自变量有两个,只绘制一个自变量与y的关系
plt.scatter(X[:, 1], y)
plt.show()

y与第二个自变量的散点图

为提高代码的复用性,可以把生成数据的部分封装成一个函数,这样如果要生成其他参数的数据时就更加方便。后续很多代码都会尽量用函数的形式表达。

# 生成数据集
def generate_data(num_samples, w, b):# 随机生成自变量x = torch.randn((num_samples, len(w)))# 生成不含噪声的 yy = torch.matmul(x, w) + b# 生成带有噪声的yy += torch.normal(0, 0.01, y.shape)print(y.shape)return x, y.reshape((-1, 1))

读取数据

如果我们采用小批量随机梯度下降作为优化算法,需要读取数据集并每次抽取一小批。

我们采用随机抽取的方式,即需要将数据集的样本打乱。编写的读取数据函数如下:

def load_data(batch_size, features, labels):num_examples = len(features)indices = list(range(num_examples))# 打乱索引顺序random.shuffle(indices)# 每次都返回一个小批量样本for i in range(0, num_examples, batch_size):batch_indices = torch.tensor(indices[i: min(i + batch_size, num_examples)])yield features[batch_indices], labels[batch_indices]

初始化参数

我们得先有一个最初的参数放进去,这样才可以去改进。如果这个初始参数选的好,可能很快就接近真实参数了。

初始权重 w 我们采用均值为 0,标准差为 0.01 的正态分布随机数,偏置 b 初始设为 0。

w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)

requires_grad=True表示需要对这些参数进行梯度的计算。

模型的定义

想想之前学过的拟合,可以用线性拟合,也可以用二次曲线拟合,都是为了将输入与输出关联起来。

可以把模型理解为一个函数,把输入放进去,可以得到一个输出。我们通过对原始数据的可视化分析,选取线性模型。

# 定义模型
def my_linear(x, w, b):# 线性模型return torch.matmul(x, w) + b

损失函数

采用平方损失函数来衡量模型好坏。注意需要对 y 使用 reshape,存在行向量与列向量的区别。

# 定义损失函数
def my_loss(y_hat, y):# 平方损失函数,y_hat为模型预测值# 这里reshape是因为读取出来的y是行向量,而预测值为列向量return (y_hat - y)**2 / 2

优化算法

采用小批量随机梯度下降算法进行优化。对参数进行更新,并清零梯度。

# 定义优化器
def my_optimizer(params, lr, batch_size):"""小批量随机梯度下降"""with torch.no_grad(): # 以下操作不计算梯度for param in params:param -= lr * param.grad / batch_sizeparam.grad.zero_()

训练模型

训练是一个反复的过程,从初始的模型参数出发,计算其预测值与损失,随后进行反向传播,得到损失函数对各个参数的梯度,最后利用优化算法对参数进行更新,转入下一轮训练。

学习率lr和训练轮数num_epochs是两个非常重要的超参数,需要反复试验不断调整,以获得较好的训练效果。

# 小批量的大小
batch_size = 10
# 学习率和训练轮数
lr = 0.03
num_epochs = 3# 开始训练
for epoch in range(num_epochs):for x, y in load_data(batch_size, features, labels):l = my_loss(my_linear(x, w, b), y)  # X和y的小批量损失# 因为l形状是(batch_size,1),而不是一个标量。# l中的所有元素被加到一起,并以此计算关于[w,b]的梯度l.sum().backward()my_optimizer([w, b], lr, batch_size)  # 使用参数的梯度更新参数with torch.no_grad():train_l = my_loss(my_linear(features, w, b), labels)# 打印出每轮训练的损失print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')# 评估训练效果
print(f'w的估计误差: {w_true - w.reshape(w_true.shape)}')
print(f'b的估计误差: {b_true - b}')

从打印出的结果可以发现,第一轮训练后的损失已经比较小了,且每轮训练后损失都在减小。最终得到的两个参数非常接近于我们用于生成数据的参数了。

epoch 1, loss 0.041334
epoch 2, loss 0.000153
epoch 3, loss 0.000048
w的估计误差: tensor([4.0889e-05, 1.1015e-04], grad_fn=<SubBackward0>)
b的估计误差: tensor([0.0004], grad_fn=<RsubBackward1>)

需要注意的是,我们不应该认为我们能完美地恢复参数,我们更关心如何高度准确预测参数。

三、线性回归的简洁实现

下面我们利用 pytorch 来实现线性回归模型,它可以帮助避免一些重复性的工作。需要导入的包有:

import torch
from torch.utils import data
from torch import nn

生成数据集

与从零实现同样,我们需要先有一个数据集。由于线性模型所需要的数据较为简单,可以自己生成。

我们采用前面写好的生成数据函数,利用随机种子生成一个相同的数据集。

读取数据集

pytorch 提供了 DataLoader 供我们进行数据读取,我们只需要传入相应格式的数据,传入参数batch_sizeshuffle的值,就可以得到一个随机小批量数据迭代器。

def load_data(data_arrays, batch_size, is_train=True):     # 读取数据"""构造一个PyTorch数据迭代器"""dataset = data.TensorDataset(*data_arrays)return data.DataLoader(dataset, batch_size, shuffle=is_train)

定义模型

在从零实现中,我们明确定义了线性模型的参数,并编写了内部进行计算的代码。如果模型的计算变得复杂,并且每天需要经常使用时,我们就会考虑对这一过程进行简化。

我们可以使用 pytorch 预先定义好的“层”,这样我们就只需要关注使用哪些层来构建我们的模型,而不用去关注怎么实现这个层。

我们首先定义一个模型变量 net,它是一个 Sequential 类的实例。Sequential 类可以将很多个层串联在一起。

当给定输入数据时,net 将数据传入第一层,然后将第一层的输出作为第二层的输入,以此类推。

线性回归可以看作一层的神经网络,实际上是不需要使用 Sequential 的。但由于以后使用的模型都会是很多层的,在这里使用 Sequtntial 可以帮助我们理解。

单层神经网络(线性回归)

上图中,它的每一个输入都通过矩阵-向量乘法得到它的输出,被称为全连接层(fully-connected layer)。

在 pytorch 中,全连接层在 nn.Linear 类中定义,它的第一参数是输入的形状,我们有两个 x x x ,所以是 2。它的第二个参数是输出的形状,线性模型的 y y y 是标量,所以是 1。

net = nn.Sequential(nn.Linear(2, 1))    # 定义模型

初始化模型参数

可以把 net 看成一个列表,用 net[0] 访问模型中的第一层,用 weight.data 和 bias.data 访问里面的参数。

我们还可以用 noraml_ 和 fill_ 来重写参数值,完成初始化。

同样,初始权重 w 我们采用均值为 0,标准差为 0.01 的正态分布随机数,偏置 b 初始设为 0。

# 初始化模型参数
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)

定义损失函数

同定义模型类似,我们可以直接调用现成的类,平方误差使用的是 nn.MSELoss 类。

loss = nn.MSELoss()   # 损失函数

定义优化器

同样,优化算法直接调用现成的 optim.SGD,利用 net.paremeters() 可以直接获取模型中的参数传入,再传入 lr 值即可定义一个小批量随机梯度下降优化器。

lr = 0.03    # 学习率
optimizer = torch.optim.SGD(net.parameters(), lr=lr)   # 优化器

训练模型

和前面的训练逻辑类似,对于每一个小批量,我们会经历以下步骤:

  • 出初始的参数出发,将数据代入模型生成输出并计算损失(前向传播);
  • 通过反向传播计算梯度;
  • 通过调用优化器来更新参数。
num_epochs = 3    # 训练轮数
for epoch in range(num_epochs):      # 开始训练for X, y in data_iter:l = loss(net(X) ,y)      # 前向传播optimizer.zero_grad()    # 避免上一轮影响,清零梯度l.backward()             # 反向传播optimizer.step()         # 更新参数l = loss(net(features), labels)print(f'epoch {epoch + 1}, loss {l:f}')
w = net[0].weight.data
print('w的估计误差:', w_true - w.reshape(w_true.shape))
b = net[0].bias.data
print('b的估计误差:', b_true - b)

同样我们可以在每轮训练后输出当前的损失,以及打印训练完成时的参数和真实参数的偏差。

epoch 1, loss 0.000273
epoch 2, loss 0.000096
epoch 3, loss 0.000096
w的估计误差: tensor([0.0004, 0.0002])
b的估计误差: tensor([-0.0002])

和从零开始实现一样,最后估计得到的参数非常接近真实参数。


两种方式实现线性神经网络的完整 py 文件见附件。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/878715.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Pepper佩盼尔wordpress模板

Pepper佩盼尔WordPress模板是一款专为追求简洁、现代和专业外观的网站设计者和开发者打造的高品质主题。它以简站为主题&#xff0c;强调“让建网站更简单”的理念&#xff0c;旨在为用户提供一个易于使用、功能丰富的平台来构建他们的在线业务或个人网站。 模板特点包括&…

手机玩黑神话悟空二周目 GameViewer远程助你手机畅玩黑神话悟空 解锁全成就全收集

用手机摸鱼完成黑神话悟空二周目全收集、成就全解锁&#xff0c;实现随时随地玩黑神话悟空&#xff0c;你可以用网易GameViewer远程。 这款远程控制软件专为游戏玩家打造&#xff0c;不管你是上班族&#xff0c;还是学生党&#xff0c;都可以用它在手机、平板上玩黑神话悟空&am…

谈一谈JVM的GC(垃圾回收)

JVM&#xff08;Java Virtual Machine&#xff09;的GC&#xff08;Garbage Collection&#xff0c;垃圾回收&#xff09;是Java语言的一个重要特性&#xff0c;它负责自动管理内存&#xff0c;释放那些不再被使用的对象所占用的内存空间。以下是对JVM GC的详细介绍&#xff1a…

风机设计基础

目录 1、风机分类按气体出口压力&#xff08;或升压&#xff09;来进行风机分类按风机全压来进行分类 2、风机定律及效率、功率、压力计算风机轴功率与扭矩关系&#xff1a;风机全压、静压效率计算公式&#xff1a;全压、动压、静压计算公式&#xff1a; 3、风机噪声1、离散噪声…

修改jupyter notebook 默认浏览器(不动配置文件,改系统默认浏览器)

最开始把联想浏览器切到EDGE就是用的修改系统的默认浏览器。不知怎么的现在搜到的方法都是在说修改配置文件&#x1f613;。 不想动配置文件&#xff0c;平时对默认浏览器没有特殊要求的&#xff0c;可以用这个方法。 这里是把默认浏览器改成联想浏览器&#xff0c;电脑也是联…

低代码平台赋能:烟花鞭炮企业数字化转型新篇章

随着数字化转型的浪潮席卷全球&#xff0c;传统制造业正面临着前所未有的变革机遇。烟花鞭炮行业&#xff0c;作为承载深厚文化底蕴与独特工艺的传统产业&#xff0c;也不例外。近年来&#xff0c;我国政府高度重视中小企业数字化转型&#xff0c;出台了一系列扶持政策&#xf…

基于大数据的电商平台电脑销售数据分析系统

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长 QQ 名片 :) 1. 项目简介 随着电子商务的蓬勃发展&#xff0c;各大电商平台积累了海量的商品数据。如何从这些数据中提取有价值的信息&#xff0c;对于商家来说至关重要。本项目利用网络爬虫技术从京东电商平台采集各类品牌…

春秋云镜(OpenSSH)·CVE-2023-51385

靶标介绍&#xff1a; OpenSSH 是使用 SSH 协议进行远程登录的连接工具。在OpenSSH 9.6版本之前的ssh中&#xff0c;如果用户名或主机名中含有shell元字符&#xff08;如 | "等&#xff09;&#xff0c;并且ssh_config中ProxyCommand、LocalCommand指令或"match exe…

Python和Java及MATLAB和CUDA显微镜导图

&#x1f3af;要点 交互式设备控制和图像处理图像背景和阴影校正可视化萤光团位置算法和读取光学图像读写转换显微镜图像生物医学细胞图像分析荧光图像算法计算亮度数据和模拟表征新型染料和缓冲液强度估计细菌图像分析扫描透射和高分辨率透射图像模拟多模态成像分割可视化透射…

Hive服务部署及Datagrip工具使用

目录 Hive服务部署 Hiveserver2服务 1&#xff09;用户说明 2&#xff09;Hiveserver2部署 &#xff08;1&#xff09;Hadoop端配置 &#xff08;2&#xff09;Hive端配置 3&#xff09;测试 &#xff08;1&#xff09;启动Hiveserver2 &#xff08;2&#xff09;使用命…

深入学习电路基础:从理论到实践

引言 电路是电子学的核心&#xff0c;也是现代科技的基石。从简单的灯泡开关到复杂的计算机处理器&#xff0c;电路在各类电子设备中都起到了至关重要的作用。深入学习电路知识不仅有助于理解电子设备的工作原理&#xff0c;还能够为实际设计和开发电子产品打下坚实的基础。 …

某云彩SRM2.0任意文件下载漏洞

文章目录 免责申明搜索语法漏洞描述漏洞复现修复建议 免责申明 本文章仅供学习与交流&#xff0c;请勿用于非法用途&#xff0c;均由使用者本人负责&#xff0c;文章作者不为此承担任何责任 搜索语法 fofa icon_hash"1665918155"漏洞描述 某云采 SRM2.0是一款先…

扁平数组转化分类树

使用下列数组生成一个分类树&#xff08;数组中每项中的pid是父节点的id&#xff0c;pid:0表示顶层&#xff0c;pid:1&#xff0c;表示这个节点属于id为1的节点&#xff0c;children该节点的子节点数组&#xff09; const jsona [{"ID": 1,"CreatedAt": …

使用大型语言模型进行监督微调(SFT)

大型语言模型&#xff08;LLMs&#xff09;通常经过几个阶段的训练&#xff0c;包括预训练和几个微调阶段&#xff1b;请参见下文。尽管预训练很昂贵&#xff08;即需要数十万美元的计算成本&#xff09;&#xff0c;但相比之下&#xff0c;微调LLM&#xff08;或进行上下文学习…

应用商店优化(ASO)的四大误区

应用商店优化 (ASO) 是移动营销中最重要的部分之一&#xff0c;可以帮助开发人员吸引自然流量并在应用推广方面取得预期效果。近年来ASO优化在开发者中越来越受欢迎。虽然它已经证明了其有效性和对应用成功的影响力&#xff0c;但尽管如此仍然存在与ASO相关的误解&#xff0c;导…

Day-04-QFile打开文件的两种方式

一、UI界面设置两个按键&#xff0c;并直接转到槽函数 二、两种代码展示 #include <QFile> #include <QDebug>//此两种方式中调用函数&#xff0c;应包含的头文件void Widget::on_btnReadFile01_clicked()//第一种打开方式 {//1. 打开文件QFile file;file.setFile…

ARM发布新一代高性能处理器N3

简介 就在2月21日&#xff0c;ARM发布了新一代面向服务器的高性能处理器N3和V3&#xff0c;N系列平衡性能和功耗&#xff0c;而V系列则注重更高的性能。此次发布的N3&#xff0c;单个die最高32核&#xff08;并加入到CCS&#xff0c;Compute Subsystems&#xff0c;包含Core&a…

【Unity案例】搭建射击系统与UI

上期将基础的移动系统搭建完毕后就可以开始搭建更加复杂的系统部分了 前排提示&#xff0c;由于一开始仅思考如何完成操作相关功能&#xff0c;以至于到后面重构稍微有些困难&#xff0c;继续写下去恐成屎山&#xff0c;故在搭完射击和武器UI后不再继续泛化到敌人和敌人状态机…

本地Gitblit使用

首先创建一个本地的gitblit的服务&#xff0c;创建流程如下&#xff1a; 【GitBlit】Windows搭建Git服务器详细教程_搭建gitblit服务-CSDN博客 GitBlit的使用教程-CSDN博客 创建好一个仓库后&#xff0c;分配好用户权限&#xff0c;再将项目拉下来&#xff0c;这里是再visua…

零信任赋予安全牙齿,AI促使它更锋利

距离上次写关于安全的文字已经过去了很久很久&#xff0c;久到上次看到的AI还停留在TTS、ASR等最初的语音交互搜索类似的各种智能音箱以及通过关键字匹配的基于知识库的聊天的机器人。之后的几年各种视觉识别遍地开花&#xff0c;AI四小龙在人脸识别上成熟应用&#xff0c;再然…