在国产芯片上实现YOLOv5/v8图像AI识别-【2.5】yolov8使用C++部署在RK3588更多内容见视频

本专栏主要是提供一种国产化图像识别的解决方案,专栏中实现了YOLOv5/v8在国产化芯片上的使用部署,并可以实现网页端实时查看。根据自己的具体需求可以直接产品化部署使用。

B站配套视频:https://www.bilibili.com/video/BV1or421T74f
在这里插入图片描述

背景基础

在之前的课程里面我们已经把v5的内容进行了充分的描述,从这篇博客开始将开始关于yolov8在C++上的部署。

首先我们需要知道v5和v8之间的区别,v5的功能主要集中在分类,具体的使用方法我们也已经全部说明。

v8除了分类以外还可以实现关键点跟踪和图像分割,所以在产品多样性方面v8更具有优势。
在这里插入图片描述
图上是yolov8的github给出的示例,分类、检测、分割、追踪、关键点识别。如果需要在产品上有更多的应用,yolov8属于必须学习的部分了。

关于yolov8的模型修改

这一步和yolov5的道理相同,如果你熟悉yolov8也会知道v8在输出头方面做了不小的修改,从原来v5版本3个改成了2个。但是整个推理过程还是一样的,预处理、推理、后处理。同样修改部分都在后处理上,所以还是一样,我们需要在训练完成之后修改v8的代码去除后处理部分。主要修改是两个位置:

位置一:nn/modules/head.py 40行~50行左右位置

在这里插入图片描述
修改部分一

		print('自定义的模型初始化...')self.conv1x1 = nn.Conv2d(16,1,1, bias=False).requires_grad_(False)xx = torch.arange(16, dtype=torch.float)self.conv1x1.weight.data[:] = nn.Parameter(xx.view(1,16,1,1))

修改部分二

		y = []for i in range(self.nl):t1 = self.cv2[i](x[i])t2 = self.cv3[i](x[i])y.append(self.conv1x1(t1.view(t1.shape[0], 4, 16, -1).transpose(2,1).softmax(1)))y.append(t2)return y

位置二:engine/model.py 130行~150行左右

在这里插入图片描述
修改内容:

        import torchself.model.fuse() self.model.eval()self.model.load_state_dict(torch.load('weights/yolov8.dict.pt', map_location='cpu'), strict=False)dummy_input = torch.randn(1, 3, 640, 640)input_names = ["data"]output_names = ["reg1","cls1","reg2","cls2","reg3","cls3"]torch.onnx.export(self.model, dummy_input, "weights/yolov8.dict.onnx", verbose=True,input_names=input_names,output_names=output_names, opset_version=11)print("done!")

项目目录新建脚本export-onnx.py

from ultralytics import YOLO# # 加载模型
# model = YOLO('weights/bz-yolov8-SPPF-s-200-754.pt')
# # 加载模型配置文件,注意需要匹配
# model = YOLO('/app/docs/yolov8/ultralytics/ultralytics/cfg/models/v8/yolov8.yaml')# 加载模型
model = YOLO('weights/yolov8n.pt')
# 加载模型配置文件,注意需要匹配
model = YOLO('yolov8n.yaml')

关于yolov8的模型量化

还是一样去官方下载rknntoolkit2,使用里面的工具进行量化,具体的使用和v5一致我们就不在这重复演示了。不过需要注意,使用Netron检查导出的onnx模型,一定要是6个输出头,不然脚本执行会出问题。
在这里插入图片描述

关于yolov8的RK3588部署

此处就是正题了,关于我们在RK3588上的部署。一样的,大家可以使用官方代码,或者私信我用我的代码版本。我的代码版本里面会准备好官方量化模型供大家测试使用。
在这里插入图片描述
更多内容查看视频>>>>>>>>>>>>>>>>> https://www.bilibili.com/video/BV1or421T74f](https://www.bilibili.com/video/BV1or421T74f
更多内容查看视频>>>>>>>>>>>>>>>>> https://www.bilibili.com/video/BV1or421T74f](https://www.bilibili.com/video/BV1or421T74f
更多内容查看视频>>>>>>>>>>>>>>>>> https://www.bilibili.com/video/BV1or421T74f](https://www.bilibili.com/video/BV1or421T74f
更多内容查看视频>>>>>>>>>>>>>>>>> https://www.bilibili.com/video/BV1or421T74f](https://www.bilibili.com/video/BV1or421T74f
更多内容查看视频>>>>>>>>>>>>>>>>> https://www.bilibili.com/video/BV1or421T74f](https://www.bilibili.com/video/BV1or421T74f
更多内容查看视频>>>>>>>>>>>>>>>>> https://www.bilibili.com/video/BV1or421T74f](https://www.bilibili.com/video/BV1or421T74f

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/877509.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

nginx简介及功能

一、简介: 1、nginx、apache是什么? ‌Nginx‌是一个高性能的HTTP和反向代理web服务器,同时也提供了IMAP/POP3/SMTP服务。它由伊戈尔赛索耶夫为Rambler.ru站点开发,以其稳定性、丰富的功能集、简单的配置文件和低系统资源的消耗而…

OSI七层网络模型 /TCP/IP五层模型以及封装分用的详细讲解

文章目录 协议分层的好处OSI七层网络模型TCP/IP五层网络模型网络设备所在的分层(重点)封装和分用 协议分层的好处 第一点: 在网络通信中,如果使用一个协议来解决所有的问题,那么这个协议就会非常的庞大,非常不利于去学习和理解&…

2023华为od机试C卷【转盘寿司】C 实现 单调栈

#include <stdio.h> #include <stdlib.h>/*单调栈 旋转寿司3 15 6 14 3 21 9 17*/ int main() {int i 0;int len 0;int data 0;int nums[501];char c ;while(scanf("%d",&nums[i]) 1){i;len;c getchar();if(c \n)break;}int *out NULL;int *s…

C语言-部分字符串函数详解 1-4

C语言-部分字符串函数详解 1-4 前言1.strlen1.1基本用法1.2注意事项\0size_t 1.3模拟实现 2.strcpy2.1基本用法2.2注意事项**源字符串必须以 \0 结束****会将源字符串中的 \0拷贝到目标空间****目标空间必须可修改****目标空间必须能容纳下源字符串的内容** 2.3模拟实现 3.strn…

【深度学习】【语音TTS】GPT-SoVITS v2 实战,训练一个人的音色,Docker镜像

文章目录 原理Dockerdocker push训练教程: https://www.yuque.com/baicaigongchang1145haoyuangong/ib3g1e/xyyqrfwiu3e2bgyk 原理 Docker 不用docker不行,不好分配显卡, 做个docker镜像: docker pull pytorch/pytorch:2.1.2

接口基础知识9:详解response body(响应体)

课程大纲 一、定义 HTTP响应体&#xff08;HTTP Response Body&#xff09;&#xff1a;服务器返回给客户端的数据部分&#xff0c;‌它包含了服务器对客户端请求的响应内容&#xff08;如客户端请求的资源、客户端请求的执行结果&#xff09;。 与请求类似&#xff0c;HTTP …

python之matplotlib (3 坐标轴设置)

写在前面 在说明坐标轴设置之前&#xff0c;我有必要和大家说清楚图像设置的一些方法&#xff0c;避免陷入困扰模糊的地步。前面我们说过&#xff0c;画图的三种方法&#xff08;python之matplotlib &#xff08;1 介绍及基本用法&#xff09;-CSDN博客&#xff09;。而设置也…

2024开源资产管理系统推荐 8款免费开源IT资产管理系统/软件

开源资产管理系统 开源资产管理系统是帮助企业管理、跟踪和优化其资产的强大工具。这些系统能够自动记录资产的详细信息&#xff0c;如采购日期、使用情况、维护记录等&#xff0c;从而实现资产的全生命周期管理。企业可以通过这些系统优化资产使用效率&#xff0c;减少资产闲…

【TCP】确认应答、超时重传机制和TCP报头

TCP 相关机制 TCP 基本特点&#xff1a;有连接、可靠传输、面向字节流、全双工 有连接、面向字节流和全双工都能在前面的代码中体现有连接&#xff1a;必须要先调用 accept 建立联系才能处理面向字节流&#xff1a;会拿到 clientSocket 对象的 InputStream 和 OutputStream&a…

python人工智能002:jupyter基本使用

小知识&#xff1a;将jupyter修改为中文&#xff0c;修改用户变量&#xff0c; 注意是用户变量&#xff0c;不是系统变量 新增用户变量 变量名&#xff1a;LANG 变量值&#xff1a;zh_CN.UTF8 然后重启jupyter 上一章的软件安装完成之后&#xff0c;就可以创建文件夹来学习写…

MaxKB(二):Ubuntu24.04搭建maxkb开发环境

接上文&#xff1a;windows10搭建maxkb开发环境&#xff08;劝退指南&#xff09; 上文在windows10环境搭建maxkb开发环境遇到各种坑&#xff0c;后面就转战ubuntu平台&#xff0c;果然比较顺利的完成开发环境搭建。当然遇到相关的问题还是可以参考上文《windows10搭建maxkb开发…

拟合与插值|线性最小二乘拟合|非线性最小二乘拟合|一维插值|二维插值

挖掘数据背后的规律是数学建模的重要任务&#xff0c;拟合与插值是常用的分析方法 掌握拟合与插值的基本概念和方法熟悉Matlab相关程序实现能够从数据中挖掘数学规律 拟合问题的基本提法 拟合问题的概念 已知一组数据(以二维为例)&#xff0c;即平面上n个点 ( x i , y i ) …

C语言指针详解-上

C语言指针详解-上 前言1.指针的基本概念1.1指针是什么1.2指针的声明与初始化1.3取地址符&和解引用符*& 运算符用于**获取变量的地址*** 运算符用于访问指针指向的值 2.指针的类型常见数据类型的指针指针与数组、字符串数组指针结构体指针函数指针二级指针void指针 3.指…

对零基础想转行网络安全同学的一点建议

最近有同学在后台留言&#xff0c;0基础怎么学网络安全&#xff1f;0基础可以转行做网络安全吗&#xff1f;以前也碰到过类似的问题&#xff0c;想了想&#xff0c;今天简单写一下。 我的回答是先了解&#xff0c;再入行。 具体怎么做呢&#xff1f; 首先&#xff0c;你要确…

滑动变阻器的未来发展趋势和前景如何?是否有替代品出现?

滑动变阻器是常见的电子元件&#xff0c;主要用于调节电路中的电阻值。随着科技的不断发展&#xff0c;滑动变阻器的未来发展趋势和前景也引起了广泛关注。 滑动变阻器的未来发展将更加注重智能化&#xff0c;随着物联网、人工智能等技术的快速发展&#xff0c;滑动变阻器也将与…

C语言 | Leetcode C语言题解之第347题前K个高频元素

题目&#xff1a; 题解&#xff1a; struct hash_table {int key;int val;// 查看 https://troydhanson.github.io/uthash/ 了解更多UT_hash_handle hh; };typedef struct hash_table* hash_ptr;struct pair {int first;int second; };void swap(struct pair* a, struct pair*…

YUM和NFS

文章目录 yum软件仓库的提供方式RPM软件包的来源Linux系统各家厂商用的安装源命令---yum 配置本地yum源具体操作 搭建ftp yum仓库环境具体操作实操环境服务端一、安装 vsftpd服务二、创建一个文件&#xff0c;并且挂载三、开启服务四、查看挂载 客户端五、备份六、搭建ftp yum仓…

【联想电脑】:使用拓展坞后转接HDMI,无法识别显示屏

项目场景&#xff1a; 作为一个嵌入式软件开发者&#xff0c;有两个外接屏幕&#xff0c;不足为奇。 但是在今天的使用电脑过程中&#xff0c;出现了接了一个拓展坞上面有HDMI接口&#xff0c;但是HDMI接口接上外接显示屏的时候电脑无法识别到&#xff0c;导致只有电脑直连的HD…

使用Docker-compose一键部署Wordpress平台

一、Docker-compose概述&#xff1a; docker-compose&#xff1a;单机容器编排 Dockerfile&#xff1a;先配置好文件&#xff0c;然后build&#xff0c;镜像——>容器。 docker-compose&#xff1a;即可基于Dockerfile&#xff0c;也可以基于镜像&#xff0c;可以一键式拉…

安全基础学习-SM4加密算法

SM4 是一种中国国家密码标准(GB/T 32907-2016)中定义的分组加密算法,又称为“中国商用密码算法SM4”。它是由中国国家密码管理局发布的,并广泛应用于金融、电子商务和其他需要数据加密的场景。 1、SM4 算法概述 SM4 是一种对称加密算法,意味着加密和解密使用相同的密钥。…