鸿蒙内核源码分析——(自旋锁篇)

本篇说清楚自旋锁

读本篇之前建议先读系列篇 进程/线程篇.

内核中哪些地方会用到自旋锁?看图:

概述

自旋锁顾名思义,是一把自动旋转的锁,这很像厕所里的锁,进入前标记是绿色可用的,进入格子间后,手一带,里面的锁转个圈,外面标记变成了红色表示在使用,外面的只能等待.这是形象的比喻,但实际也是如此.

在多CPU核环境中,由于使用相同的内存空间,存在对同一资源进行访问的情况,所以需要互斥访问机制来保证同一时刻只有一个核进行操作,自旋锁就是这样的一种机制。

  • 自旋锁是指当一个线程在获取锁时,如果锁已经被其它CPU中的线程获取,那么该线程将循环等待,并不断判断是否能够成功获取锁,直到其它CPU释放锁后,等锁CPU才会退出循环。

  • 自旋锁的设计理念是它仅会被持有非常短的时间,锁只能被一个任务持有,而且持有自旋锁的CPU是不可以进入睡眠模式的,因为其他的CPU在等待锁,为了防止死锁上下文交换也是不允许的,是禁止发生调度的.

  • 自旋锁与互斥锁比较类似,它们都是为了解决对共享资源的互斥使用问题。无论是互斥锁,还是自旋锁,在任何时刻,最多只能有一个持有者。但是两者在调度机制上略有不同,对于互斥锁,如果锁已经被占用,锁申请者会被阻塞;但是自旋锁不会引起调用者阻塞,会一直循环检测自旋锁是否已经被释放。

虽然都是共享资源竞争,但自旋锁强调的是CPU核间的竞争,而互斥量强调的是任务(包括同一CPU核)之间的竞争.

自旋锁长什么样?

    typedef struct Spinlock {//自旋锁结构体size_t      rawLock;//原始锁#if (LOSCFG_KERNEL_SMP_LOCKDEP == YES) // 死锁检测模块开关UINT32      cpuid; //持有锁的CPUVOID        *owner; //持有锁任务const CHAR  *name; //锁名称#endif} SPIN_LOCK_S;

结构体很简单,里面有个宏,用于死锁检测,默认情况下是关闭的.所以真正的被使用的变量只有rawLock一个.但C语言代码中找不到变量的变化过程,而是通过一段汇编代码来实现.看完本篇会明白也只能通过汇编代码来实现自旋锁.

自旋锁使用流程

自旋锁用于多CPU核的情况,解决的是CPU之间竞争资源的问题.使用流程很简单,三步走。

  • 创建自旋锁:使用LOS_SpinInit初始化自旋锁,或者使用SPIN_LOCK_INIT初始化静态内存的自旋锁。

  • 申请自旋锁:使用接口LOS_SpinLock LOS_SpinTrylock LOS_SpinLockSave申请指定的自旋锁,申请成功就继续往后执行锁保护的代码;申请失败在自旋锁申请中忙等,直到申请到自旋锁为止。

  • 释放自旋锁:使用LOS_SpinUnlock LOS_SpinUnlockRestore接口释放自旋锁。锁保护代码执行完毕后,释放对应的自旋锁,以便其他核申请自旋锁。

几个关键函数

自旋锁模块由内联函数实现,见于los_spinlock.h 代码不多,主要是三个函数.

ArchSpinLock(&lock->rawLock);
ArchSpinTrylock(&lock->rawLock)
ArchSpinUnlock(&lock->rawLock);

可以说掌握了它们就掌握了自旋锁,但这三个函数全由汇编实现.见于los_dispatch.S文件
因为系列篇已有两篇讲过汇编代码,所以很容易理解这三段代码.函数的参数由r0记录,即r0保存了lock->rawLock的地址,拿锁/释放锁是让lock->rawLock在0,1切换
下面逐一说明自旋锁的汇编代码.

ArchSpinLock 汇编代码

    FUNCTION(ArchSpinLock)  @死守,非要拿到锁mov     r1, #1      @r1=11:                      @循环的作用,因SEV是广播事件.不一定lock->rawLock的值已经改变了ldrex   r2, [r0]    @r0 = &lock->rawLock, 即 r2 = lock->rawLockcmp     r2, #0      @r2和0比较wfene               @不相等时,说明资源被占用,CPU核进入睡眠状态strexeq r2, r1, [r0]@此时CPU被重新唤醒,尝试令lock->rawLock=1,成功写入则r2=0cmpeq   r2, #0      @再来比较r2是否等于0,如果相等则获取到了锁bne     1b          @如果不相等,继续进入循环dmb                 @用DMB指令来隔离,以保证缓冲中的数据已经落实到RAM中bx      lr          @此时是一定拿到锁了,跳回调用ArchSpinLock函数

看懂了这段汇编代码就理解了自旋锁实现的真正机制,为什么一定要用汇编来实现. 因为CPU宁愿睡眠也非拿要到锁不可的, 注意这里可不是让线程睡眠,而是让CPU进入睡眠状态,能让CPU进入睡眠的只能通过汇编实现.C语言根本就写不出让CPU真正睡眠的代码.

ArchSpinTrylock 汇编代码

如果不看下面这段汇编代码,你根本不可能知道 ArchSpinTrylock 和 ArchSpinLock的真正区别是什么.

    FUNCTION(ArchSpinTrylock)   @尝试拿锁,拿不到就撤mov     r1, #1          @r1=1mov     r2, r0          @r2 = r0       ldrex   r0, [r2]        @r2 = &lock->rawLock, 即 r0 = lock->rawLockcmp     r0, #0          @r0和0比较strexeq r0, r1, [r2]    @尝试令lock->rawLock=1,成功写入则r0=0,否则 r0 =1dmb                     @数据存储隔离,以保证缓冲中的数据已经落实到RAM中bx      lr              @跳回调用ArchSpinLock函数

比较两段汇编代码可知,ArchSpinTrylock即没有循环也不会让CPU进入睡眠,直接返回了,而ArchSpinLock会睡了醒, 醒了睡,一直守到丈夫( lock->rawLock = 0的广播事件发生)回来才肯罢休. 笔者代码注释到这里那真是心潮澎湃,心碎了老一地, 真想给 ArchSpinLock 立一个贞节牌坊!

ArchSpinUnlock 汇编代码

    FUNCTION(ArchSpinUnlock)    @释放锁mov     r1, #0          @r1=0               dmb                     @数据存储隔离,以保证缓冲中的数据已经落实到RAM中str     r1, [r0]        @令lock->rawLock = 0dsb                     @数据同步隔离sev                     @给各CPU广播事件,唤醒沉睡的CPU们bx      lr              @跳回调用ArchSpinLock函数

代码中涉及到几个不常用的汇编指令,一一说明:

汇编指令之 WFI / WFE / SEV

WFI(Wait for interrupt):等待中断到来指令. WFI一般用于cpuidle,WFI 指令是在处理器发生中断或类似异常之前不需要做任何事情。

在鸿蒙源码分析系列篇(总目录)线程篇中已说过,每个CPU都有自己的idle任务,CPU没事干的时候就待在里面,就一个死循环守着WFI指令,有中断来了就触发CPU起床干活. 中断分硬中断和软中断,系统调用就是通过软中断实现的,而设备类的就属于硬中断,都能触发CPU干活. 具体看下CPU空闲的时候在干嘛,代码超级简单:

LITE_OS_SEC_TEXT WEAK VOID OsIdleTask(VOID) //CPU没事干的时候待在这里
{while (1) {//只有一个死循环Wfi();//WFI指令:arm core 立即进入low-power standby state,等待中断,进入休眠模式。}
}

WFE(Wait for event):等待事件的到来指令WFE 指令是在SEV指令生成事件之前不需要执行任何操作,所以用WFE的地方,后续一定会对应一个SEV的指令去唤醒它.
WFE的一个典型使用场景,是用在自旋锁中,spinlock的功能,是在不同CPU core之间,保护共享资源。使用WFE的流程是:

  • 开始之初资源空闲
  • CPU核1 访问资源,持有锁,获得资源
  • CPU核2 访问资源,此时资源不空闲,执行WFE指令,让core进入low-power state(睡眠)
  • CPU核1 释放资源,释放锁,释放资源,同时执行SEV指令,唤醒CPU核2
  • CPU核2 获得资源

另外说一下 以往的自旋锁,在获得不到资源时,让CPU核进入死循环,而通过插入WFE指令,则大大节省功耗.

SEV(send event):发送事件指令,SEV是一条广播指令,它会将事件发送到多处理器系统中的所有处理器,以唤醒沉睡的CPU.

SEVWFE的实现很像设计模式的观察者模式.

汇编指令之 LDREX / STREX

LDREX用来读取内存中的值,并标记对该段内存的独占访问:

LDREX Rx, [Ry]
上面的指令意味着,读取寄存器Ry指向的4字节内存值,将其保存到Rx寄存器中,同时标记对Ry指向内存区域的独占访问。

如果执行LDREX指令的时候发现已经被标记为独占访问了,并不会对指令的执行产生影响。

而STREX在更新内存数值时,会检查该段内存是否已经被标记为独占访问,并以此来决定是否更新内存中的值:

STREX Rx, Ry, [Rz]
如果执行这条指令的时候发现已经被标记为独占访问了,则将寄存器Ry中的值更新到寄存器Rz指向的内存,并将寄存器Rx设置成0。指令执行成功后,会将独占访问标记位清除。

而如果执行这条指令的时候发现没有设置独占标记,则不会更新内存,且将寄存器Rx的值设置成1。

一旦某条STREX指令执行成功后,以后再对同一段内存尝试使用STREX指令更新的时候,会发现独占标记已经被清空了,就不能再更新了,从而实现独占访问的机制。

编程实例

本实例实现如下流程。

  • 任务Example_TaskEntry初始化自旋锁,创建两个任务Example_SpinTask1、Example_SpinTask2,分别运行于两个核。
  • Example_SpinTask1、Example_SpinTask2中均执行申请自旋锁的操作,同时为了模拟实际操作,在持有自旋锁后进行延迟操作,最后释放自旋锁。
  • 300Tick后任务Example_TaskEntry被调度运行,删除任务Example_SpinTask1和Example_SpinTask2。
#include "los_spinlock.h"
#include "los_task.h"/* 自旋锁句柄id */
SPIN_LOCK_S g_testSpinlock;
/* 任务ID */
UINT32 g_testTaskId01;
UINT32 g_testTaskId02;VOID Example_SpinTask1(VOID)
{UINT32 i;UINTPTR intSave;/* 申请自旋锁 */dprintf("task1 try to get spinlock\n");LOS_SpinLockSave(&g_testSpinlock, &intSave);dprintf("task1 got spinlock\n");for(i = 0; i < 5000; i++) {asm volatile("nop");}/* 释放自旋锁 */dprintf("task1 release spinlock\n");LOS_SpinUnlockRestore(&g_testSpinlock, intSave);return;
}VOID Example_SpinTask2(VOID)
{UINT32 i;UINTPTR intSave;/* 申请自旋锁 */dprintf("task2 try to get spinlock\n");LOS_SpinLockSave(&g_testSpinlock, &intSave);dprintf("task2 got spinlock\n");for(i = 0; i < 5000; i++) {asm volatile("nop");}/* 释放自旋锁 */dprintf("task2 release spinlock\n");LOS_SpinUnlockRestore(&g_testSpinlock, intSave);return;
}UINT32 Example_TaskEntry(VOID)
{UINT32 ret;TSK_INIT_PARAM_S stTask1;TSK_INIT_PARAM_S stTask2;/* 初始化自旋锁 */LOS_SpinInit(&g_testSpinlock);/* 创建任务1 */memset(&stTask1, 0, sizeof(TSK_INIT_PARAM_S));stTask1.pfnTaskEntry  = (TSK_ENTRY_FUNC)Example_SpinTask1;stTask1.pcName        = "SpinTsk1";stTask1.uwStackSize   = LOSCFG_TASK_MIN_STACK_SIZE;stTask1.usTaskPrio    = 5;
#ifdef LOSCFG_KERNEL_SMP/* 绑定任务到CPU0运行 */stTask1.usCpuAffiMask = CPUID_TO_AFFI_MASK(0);
#endifret = LOS_TaskCreate(&g_testTaskId01, &stTask1);if(ret != LOS_OK) {dprintf("task1 create failed .\n");return LOS_NOK;}/* 创建任务2 */memset(&stTask2, 0, sizeof(TSK_INIT_PARAM_S));stTask2.pfnTaskEntry = (TSK_ENTRY_FUNC)Example_SpinTask2;stTask2.pcName       = "SpinTsk2";stTask2.uwStackSize  = LOSCFG_TASK_MIN_STACK_SIZE;stTask2.usTaskPrio   = 5;
#ifdef LOSCFG_KERNEL_SMP/* 绑定任务到CPU1运行 */stTask1.usCpuAffiMask = CPUID_TO_AFFI_MASK(1);
#endifret = LOS_TaskCreate(&g_testTaskId02, &stTask2);if(ret != LOS_OK) {dprintf("task2 create failed .\n");return LOS_NOK;}/* 任务休眠300Ticks */LOS_TaskDelay(300);/* 删除任务1 */ret = LOS_TaskDelete(g_testTaskId01);if(ret != LOS_OK) {dprintf("task1 delete failed .\n");return LOS_NOK;}/* 删除任务2 */ret = LOS_TaskDelete(g_testTaskId02);if(ret != LOS_OK) {dprintf("task2 delete failed .\n");return LOS_NOK;}return LOS_OK;
}

运行结果

task2 try to get spinlock
task2 got spinlock
task1 try to get spinlock
task2 release spinlock
task1 got spinlock
task1 release spinlock

总结

  • 自旋锁用于解决CPU核间竞争资源的问题
  • 因为自旋锁会让CPU陷入睡眠状态,所以锁的代码不能太长,否则容易导致意外出现,也影响性能.
  • 必须由汇编代码实现,因为C语言写不出让CPU进入真正睡眠,核间竞争的代码.

经常有很多小伙伴抱怨说:不知道学习鸿蒙开发哪些技术?不知道需要重点掌握哪些鸿蒙应用开发知识点?

为了能够帮助到大家能够有规划的学习,这里特别整理了一套纯血版鸿蒙(HarmonyOS Next)全栈开发技术的学习路线,包含了鸿蒙开发必掌握的核心知识要点,内容有(ArkTS、ArkUI开发组件、Stage模型、多端部署、分布式应用开发、WebGL、元服务、OpenHarmony多媒体技术、Napi组件、OpenHarmony内核、OpenHarmony驱动开发、系统定制移植等等)鸿蒙(HarmonyOS NEXT)技术知识点。

在这里插入图片描述

《鸿蒙 (Harmony OS)开发学习手册》(共计892页)

如何快速入门?

1.基本概念
2.构建第一个ArkTS应用
3.……

开发基础知识:

1.应用基础知识
2.配置文件
3.应用数据管理
4.应用安全管理
5.应用隐私保护
6.三方应用调用管控机制
7.资源分类与访问
8.学习ArkTS语言
9.……

在这里插入图片描述

基于ArkTS 开发

1.Ability开发
2.UI开发
3.公共事件与通知
4.窗口管理
5.媒体
6.安全
7.网络与链接
8.电话服务
9.数据管理
10.后台任务(Background Task)管理
11.设备管理
12.设备使用信息统计
13.DFX
14.国际化开发
15.折叠屏系列
16.……

在这里插入图片描述

鸿蒙开发面试真题(含参考答案)

在这里插入图片描述

OpenHarmony 开发环境搭建
图片

《OpenHarmony源码解析》

  • 搭建开发环境
  • Windows 开发环境的搭建
  • Ubuntu 开发环境搭建
  • Linux 与 Windows 之间的文件共享
  • ……
  • 系统架构分析
  • 构建子系统
  • 启动流程
  • 子系统
  • 分布式任务调度子系统
  • 分布式通信子系统
  • 驱动子系统
  • ……

图片

OpenHarmony 设备开发学习手册

图片

写在最后

如果你觉得这篇内容对你还蛮有帮助,我想邀请你帮我三个小忙

  • 点赞,转发,有你们的 『点赞和评论』,才是我创造的动力。
  • 关注小编,同时可以期待后续文章ing🚀,不定期分享原创知识。
  • 想要获取更多完整鸿蒙最新学习资源,请移步前往在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/877446.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

10分钟学会LVM逻辑卷

华子目录 前言认识LVMLVM基本概念LVM整体流程LVM管理命令pvs&#xff0c;vgs&#xff0c;lvs命令pvs基本用法选项示例 vgs基本用法选项示例 lvs基本用法 pvcreate&#xff0c;vgcreate&#xff0c;lvcreate命令pvcreate示例 vgcreate基本用法示例选项 lvcreate基本用法示例 pvr…

Python爬虫入门教程(非常详细)适合零基础小白

一、什么是爬虫&#xff1f; 1.简单介绍爬虫 爬虫的全称为网络爬虫&#xff0c;简称爬虫&#xff0c;别名有网络机器人&#xff0c;网络蜘蛛等等。 网络爬虫是一种自动获取网页内容的程序&#xff0c;为搜索引擎提供了重要的数据支撑。搜索引擎通过网络爬虫技术&#xff0c;将…

【电路笔记】-无源衰减器总结

无源衰减器总结 文章目录 无源衰减器总结1、概述2、L-型无源衰减器设计3、T-型无源衰减器设计4、桥接 T 型衰减器设计5、π型无源衰减器设计无源衰减器是一个纯电阻网络,可用于控制输出信号的电平。 1、概述 无源衰减器是一种纯电阻网络,用于削弱或“衰减”传输线的信号电平…

Element UI中报dateObject.getTime is not a function解决方法~

1、错误信息。 2、该报错原因是Element UI中日期组件的校验规则是type: "date",而一般我们从后台拿到的数据是字符串型的&#xff0c;不满足预期&#xff0c;就会报错。 3、解决方法。 去掉日子组件中的type: "date"校验规则即可。 rules: {newName: [{…

EasyCVR视频汇聚平台:深度解析GB/T 28181协议下的视频资源整合与应用

随着安防技术的快速发展和智慧城市建设的推进&#xff0c;视频监控系统作为公共安全、城市管理、企业运营等领域的重要基础设施&#xff0c;其重要性和应用范围不断扩大。在这一过程中&#xff0c;GB/T 28181作为国家标准中关于视频监控设备通信协议的规范&#xff0c;正逐渐受…

C2M商业模式分析与运营平台建设解决方案(四)

C2M商业模式以消费者需求驱动生产制造&#xff0c;实现个性化与效率的双赢。本解决方案将围绕构建智能化、数据驱动的运营平台&#xff0c;通过精准把握市场需求、优化生产流程、强化供应链管理&#xff0c;打造高效、敏捷、柔性的C2M运营体系&#xff0c;助力企业快速响应市场…

华为AR1220配置GRE隧道

1.GRE隧道的配置 GRE隧道的配置过程,包括设置接口IP地址、配置GRE隧道接口和参数、配置静态路由以及测试隧道连通性。GRE隧道作为一种标准协议,支持多协议传输,但不提供加密,并且可能导致CPU资源消耗大和调试复杂等问题。本文采用华为AR1220路由器来示例说明。 配置…

【电路笔记】-桥接 T 型衰减器

桥接 T 型衰减器 文章目录 桥接 T 型衰减器1、概述2、桥接 T 型衰减器示例 13、可变桥接 T 型衰减器4、完全可调衰减器5、可切换桥接 T 型衰减器Bridged-T 衰减器是另一种电阻衰减器设计,它是标准对称 T 垫衰减器的变体。 1、概述 顾名思义,桥接 T 形衰减器具有一个额外的电…

Cesium模型制作,解决Cesium加载glb/GLTF显示太黑不在中心等问题

Cesium模型制作&#xff0c;解决Cesium加载glb/GLTF显示太黑不在中心等问题 QQ可以联系这里&#xff0c;谢谢

Spring SSM框架--MVC

SSM框架–Mybatis 一、介绍 Spring 框架是一个资源整合的框架&#xff0c;可以整合一切可以整合的资源&#xff08;Spring 自身和第三方&#xff09;&#xff0c;是一个庞大的生态&#xff0c;包含很多子框架&#xff1a;Spring Framework、Spring Boot、Spring Data、Spring…

C++高性能编程:ZeroMQ vs Fast-DDS发布-订阅模式下性能对比与分析

文章目录 0. 引言1. 目标&#xff1a;ZeroMQ与Fast-DDS性能对比2. ZeroMQ vs Fast-DDS - 延迟基准测试2.1 一对一发布-订阅延迟2.2 一对多发布-订阅延迟 3. ZeroMQ vs Fast-DDS - 吞吐量基准测试4. 方法论5. 结论6. 参考 0. 引言 高要求的分布式系统催生了对轻量级且高性能中间…

C#MVC返回DataTable到前端展示。

很久没写博客了&#xff0c;闭关太久&#xff0c;失踪人口回归&#xff0c;给诸位道友整点绝活。 交代下背景&#xff1a;要做一个行转列的汇总统计&#xff0c;而且&#xff0c;由于是行转列&#xff0c;列的数量不固定&#xff0c;所以&#xff0c;没法使用正常的SqlSugar框…

el-tree树状控件,定位到选中的节点的位置

效果图 在el-tree 控件加 :render-content"renderContent" 在掉接口的方法中 实际有用的是setTimeout 方法和this.$refs.xxxxxx.setCheckedKeys([industrycodeList]) if(res.data.swindustrylist.length>0){res.data.swindustrylist.forEach(item > {industry…

STM32之SPI读写W25Q128芯片

SPI简介 STM32的SPI是一个串行外设接口。它允许STM32微控制器与其他设备&#xff08;如传感器、存储器等&#xff09;进行高速、全双工、同步的串行通信。通常包含SCLK&#xff08;串行时钟&#xff09;、MOSI&#xff08;主设备输出/从设备输入Master Output Slave Input&…

Linux系统编程 --- 多线程

线程&#xff1a;是进程内的一个执行分支&#xff0c;线程的执行粒度&#xff0c;要比进程要细。 一、线程的概念 1、Linux中线程该如何理解 地址空间就是进程的资源窗口。 在一个程序里的一个执行路线就叫做线程&#xff08;thread&#xff09;。更准确的定义是&#xff1…

聊聊场景及场景测试

在我们进行测试过程中&#xff0c;有一种黑盒测试叫场景测试&#xff0c;我们完全是从用户的角度去理解系统&#xff0c;从而可以挖掘用户的隐含需求。 场景是指用户会使用这个系统来完成预定目标的所有情况的集合。 场景本身也代表了用户的需求&#xff0c;所以我们可以认为…

SpringBoot+Vue在线商城(电子商城)系统-附源码与配套论文

摘 要 随着互联网技术的发展和普及&#xff0c;电子商务在全球范围内得到了迅猛的发展&#xff0c;已经成为了一种重要的商业模式和生活方式。电子商城是电子商务的重要组成部分&#xff0c;是一个基于互联网的商业模式和交易平台&#xff0c;通过网络进行产品和服务的销售。…

计算机图形学 | 动画模拟

动画模拟 布料模拟 质点弹簧系统&#xff1a; 红色部分很弱地阻挡对折 Steep connection FEM:有限元方法 粒子系统 粒子系统本质上就是在定义个体和群体的关系。 动画帧率 VR游戏要不晕需要达到90fps Forward Kinematics Inverse Kinematics 只告诉末端p点&#xff0c;中间…

Delphi5实现色板程序——滑块型组件实例

效果图 参考 Delphi程序设计基础&#xff1a;教程、实验、习题 代码 unit Unit1;interfaceusesSysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,Dialogs, Forms,Form, Formprpt, ExtCtrls, StdCtrls;typeTForm1 class(MForm)Label1: TLabel;Label2: …

公式编辑器 -vue-formula-editor

前言 公式编辑旨在帮助用户使用可视化的前提&#xff0c;能便捷的使用平台&#xff0c;例如低代码平台使用广泛 vue-formula-editor vue-formula-editor是一款开源的Vue公式计算组件&#xff0c;可以帮助开发者快速集成公式编辑 在线体验 demo & 源码 安装 npm i vue-form…