问题描述
物流问题
有一个物流公司需要从起点A到终点B进行货物运输,在运输过程中,该公司需要途径多个不同的城市,并且在每个城市中都有一个配送站点。为了最大程度地降低运输成本和时间,该公司需要确定经过哪些配送站点,并且给出完成货物运输的最短路径长度。
路线分布图
问题分析
问题简化
可以将该问题抽象为多段图的最短路径问题,其中每个城市对应图中的一个节点,不同城市之间的距离对应着图中的边权,城市内部的配送站可以看作同一个节点。从起点A到终点B的货物运输路径可以表示为多段图中的一条路径。找到起点A到终点B的最短路径并给出路径长度即可求解此问题。
路线简化图
下标 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
元素值 | 4 | 8 | 6 | 10 | 8 | 12 | 14 | 17 | 15 |
状态转换 | 0->1 | 0->2 | 0->3 | 1->4 | 3->5 | 5->6 | 5->7 | 5->8 | 7->9 |
最短路径为:0->3->5->7->9,最短路径长度为15
算法设计
算法设计分析
多段图的最短路径问题满足最优性原理,可以使用动态规划法求解。
设Cuv表示多段图的有向边<u,v>上的权值,从源点s到终点t的最短路径长度记为d(s,t),原问题的部分解d(s,v),则下式成立:
d(s,v)=Csv (<s,v>∈E)
d(s,v)=min{d(s,u)+Cuv} (<u,v>∈E)
数组arc[n][n]存储图的代价矩阵,数组cost[n]存储最短路径长度,cost[j]表示从源点s到顶点j的最短路径长度,数组path[n]记录转移状态,path[j]表示从源点s到顶点j的路径上顶点j的前一个顶点。
算法伪代码
输入:多段图的代价矩阵
输出:最短路径长度及路径c[n][n]
1.循环变量j从1~n-1重复下述操作,执行填表工作
1.1考察顶点j的所有入边,对于边<i,j>∈E,执行下述操作
1.1.1cost[j]=min{cost[i]+c[i][j]}
1.1.2path[j]=使cost[i]+c[i][j]最小的i
1.2 j++
2.输出最短路径长度cost[n-1]
3.循环变量i=path[n-1],循环直到path[i]=0,输出最短路径经过的顶点
3.1输出path[i]
3.2 i=path[i]
实验结果
最短路径
最短路径为:0->3->5->7->9,最短路径长度是15
算法分析
时间复杂度分析
算法第一部分是依次计算从源点到各个顶点的最短路径长度,由两层循环嵌套组成,外层循环执行n-1次,内层循环对所有入边进行计算,在所有循环中,每条入边只计算一次。假设图的边数为m,时间复杂度为O(m);第二部分是输出最短路径经过的顶点,设多段图划分为k段,时间复杂度为O(k)。整个算法的时间复杂度为O(m+k)。
空间复杂度分析
算法的空间复杂度主要体现在图的代价矩阵arc[n][n]的存储,空间复杂度为O(n^2),存储最短路径长度的数组cost[n]的空间复杂度为O(n),转移状态记录数组path[n]的空间复杂度为O(n),所以整个算法的空间复杂度为O(n^2)。
源代码
#include<iostream>
using namespace std;
#define INF 999
int arc[10][10]; // 最多10个点
int CreateGraph()
{int i, j, k;int weight;int vnum, arcnum;cout << "请输入顶点和边的个数:";cin >> vnum >> arcnum;for (int i = 0; i < vnum; i++) // 初始化图的代价矩阵 for (int j = 0; j < vnum; j++)arc[i][j] = INF;for (k = 0; k < arcnum; k++){cout << "请输入第" << k + 1 << "条边的两个顶点和权值:";cin >> i >> j >> weight;arc[i][j] = weight;}return vnum; // 返回顶点的个数
}
// 求 n个顶点的多段图的最短路径
int BackPath(int n)
{int i, j, temp;int cost[100], path[100]; // 存储路径长度和路径 for (i = 1; i < n; i++){cost[i] = INF;path[i] = -1;}cost[0] = 0; // 顶点0为源点 path[0] = -1;for (j = 1; j < n; j++) // 依次计算后面下标为1到n-1的点(填表) for (i = j - 1; i >= 0; i--){if (cost[i] + arc[i][j] < cost[j]){cost[j] = cost[i] + arc[i][j]; // 更新值 path[j] = i; // 记录前一个点 }}// 输出路径i = n - 1;cout << "最短路径为:" << i;while (path[i] >= 0)// 前一个点大于0 {cout << "<-" << path[i];i = path[i]; // 更新为前一个点 }cout << endl;return cost[n - 1]; // 返回最短路径长度
}
int main()
{int graph = CreateGraph();cout << "最短路径长度为:" << BackPath(graph) << endl;return 0;
}
感谢大家的观看