opencv学习:图像视频的读取截取部分图像数据颜色通道提取合并颜色通道边界填充数值计算图像融合

一、计算机眼中的图像

1.图像操作

构成像素点的数字在0~255之间

RGB叫做图像的颜色通道

 h=500,w=500

 

 2.灰度图像

3. 彩色图像

 4.图像的读取

 5.视频的读取

cv2.VideoCapture()--在OpenCV中,可以使用VideoCapture来读取视频文件,或是摄像头数据。

cv2.VideoCapture.isOpened()--判断文件打开是否成功,可以使用cv2.VideoCapture.isOpened()这个函数。

cv2.VideoCapture.read()--cv2.VideoCapture.read()提供了一个最简单的视频帧处理方式,集合了抓起Grab(),解码retrieve()两个功能,返回解码之后的数据。需要特别注意的是,如果获取到空帧,抓取失败或是文件结束,返回值会是一个空指针

示例:

VideoCapture也是支持读取摄像头的,提供rtsp码流即码流地址,

 二

1.截取部分图像数据
import os   
import cv2 # 遍历指定目录,显示目录下的所有文件名
def CropImage4File(filepath,destpath):pathDir =  os.listdir(filepath)    # 列出文件路径中的所有路径或文件for allDir in pathDir:child = os.path.join(filepath, allDir)dest = os.path.join(destpath,allDir)if os.path.isfile(child):image = cv2.imread(child) sp = image.shape            #获取图像形状:返回【行数值,列数值】列表sz1 = sp[0]                 #图像的高度(行 范围)sz2 = sp[1]                 #图像的宽度(列 范围)#sz3 = sp[2]                #像素值由【RGB】三原色组成#你想对文件的操作a=int(sz1/2-64) # x startb=int(sz1/2+64) # x endc=int(sz2/2-64) # y startd=int(sz2/2+64) # y endcropImg = image[a:b,c:d]   #裁剪图像cv2.imwrite(dest,cropImg)  #写入图像路径if __name__ == '__main__':filepath ='F:\\\maomi'             #源图像destpath='F:\\maomi_resize'        # resized images saved hereCropImage4File(filepath,destpath)
2. 截取部分图像数据-批量处理
"""
处理数据集 和 标签数据集的代码:(主要是对原始数据集裁剪)处理方式:分别处理注意修改 输入 输出目录 和 生成的文件名output_dir = "./label_temp"input_dir = "./label"
"""
import cv2
import os
import sys
import timedef get_img(input_dir):img_paths = []for (path,dirname,filenames) in os.walk(input_dir):for filename in filenames:img_paths.append(path+'/'+filename)print("img_paths:",img_paths)return img_pathsdef cut_img(img_paths,output_dir):scale = len(img_paths)for i,img_path in enumerate(img_paths):a = "#"* int(i/1000)b = "."*(int(scale/1000)-int(i/1000))c = (i/scale)*100time.sleep(0.2)print('正在处理图像: %s' % img_path.split('/')[-1])img = cv2.imread(img_path)weight = img.shape[1]if weight>1600:                         # 正常发票cropImg = img[50:200, 700:1500]    # 裁剪【y1,y2:x1,x2】#cropImg = cv2.resize(cropImg, None, fx=0.5, fy=0.5,#interpolation=cv2.INTER_CUBIC) #缩小图像cv2.imwrite(output_dir + '/' + img_path.split('/')[-1], cropImg)else:                                        # 卷帘发票cropImg_01 = img[30:150, 50:600]cv2.imwrite(output_dir + '/'+img_path.split('/')[-1], cropImg_01)print('{:^3.3f}%[{}>>{}]'.format(c,a,b))if __name__ == '__main__':output_dir = "../img_cut"           # 保存截取的图像目录input_dir = "../img"                # 读取图片目录表img_paths = get_img(input_dir)print('图片获取完成 。。。!')cut_img(img_paths,output_dir)
3. 多进程(加快处理)
#coding: utf-8
"""
采用多进程加快处理。添加了在读取图片时捕获异常,OpenCV对大分辨率或者tif格式图片支持不好
处理数据集 和 标签数据集的代码:(主要是对原始数据集裁剪)处理方式:分别处理注意修改 输入 输出目录 和 生成的文件名output_dir = "./label_temp"input_dir = "./label"
"""
import multiprocessing
import cv2
import os
import timedef get_img(input_dir):img_paths = []for (path,dirname,filenames) in os.walk(input_dir):for filename in filenames:img_paths.append(path+'/'+filename)print("img_paths:",img_paths)return img_pathsdef cut_img(img_paths,output_dir):imread_failed = []try:img = cv2.imread(img_paths)height, weight = img.shape[:2]if (1.0 * height / weight) < 1.3:       # 正常发票cropImg = img[50:200, 700:1500]     # 裁剪【y1,y2:x1,x2】cv2.imwrite(output_dir + '/' + img_paths.split('/')[-1], cropImg)else:                                   # 卷帘发票cropImg_01 = img[30:150, 50:600]cv2.imwrite(output_dir + '/' + img_paths.split('/')[-1], cropImg_01)except:imread_failed.append(img_paths)return imread_faileddef main(input_dir,output_dir):img_paths = get_img(input_dir)scale = len(img_paths)results = []pool = multiprocessing.Pool(processes = 4)for i,img_path in enumerate(img_paths):a = "#"* int(i/10)b = "."*(int(scale/10)-int(i/10))c = (i/scale)*100results.append(pool.apply_async(cut_img, (img_path,output_dir )))print('{:^3.3f}%[{}>>{}]'.format(c, a, b)) # 进度条(可用tqdm)pool.close()                        # 调用join之前,先调用close函数,否则会出错。pool.join()                         # join函数等待所有子进程结束for result in results:print('image read failed!:', result.get())print ("All done.")if __name__ == "__main__":input_dir = "D:/image_person"       # 读取图片目录表output_dir = "D:/image_person_02"   # 保存截取的图像目录main(input_dir, output_dir)
 4.颜色通道提取

在OpenCV中,cv2.split() 函数用于将多通道数组(如彩色图像)拆分为多个单通道数组。彩色图像通常由多个颜色通道组成,例如BGR(蓝绿红)彩色空间中的三个通道。cv2.split() 函数将这些通道拆分为独立的数组,每个数组只包含一个通道的信息。

以下是使用 cv2.split() 的示例代码:

import cv2# 读取一张彩色图片
image = cv2.imread('path_to_your_color_image.jpg')# 使用 cv2.split() 拆分通道
b, g, r = cv2.split(image)# 此时,b, g, r 分别包含蓝色、绿色和红色通道的图像数据# 如果你想查看每个通道的图像,可以这样做:
cv2.imshow('Blue Channel', b)
cv2.imshow('Green Channel', g)
cv2.imshow('Red Channel', r)# 等待按键,然后关闭窗口
cv2.waitKey(0)
cv2.destroyAllWindows()
 5.合并颜色通道

cv2.merge() 是 OpenCV 中用来合并多个单通道图像为一个多通道图像的函数。它的工作原理与 cv2.split() 相反。如果你有几个单通道图像(例如,从 cv2.split() 得到的),并且你想将它们合并成一个多通道图像(例如,一个彩色图像),那么你可以使用 cv2.merge()。

以下是 cv2.merge() 的基本用法:

import cv2# 假设你有三个单通道图像:b, g, r
# 这些通常是通过 cv2.split() 从一个彩色图像中得到的
b = ... # 蓝色通道图像
g = ... # 绿色通道图像
r = ... # 红色通道图像# 使用 cv2.merge() 将它们合并为一个彩色图像
bgr_image = cv2.merge([b, g, r])# 现在 bgr_image 是一个包含 b, g, r 三个通道的彩色图像

在 cv2.merge() 函数中,你需要传递一个列表作为参数,该列表包含你想要合并的所有单通道图像。合并的顺序很重要,因为它决定了输出图像中通道的顺序。在上述示例中,我们按照 BGR(蓝绿红)的顺序合并了通道,这是 OpenCV 中彩色图像的标准通道顺序。

如果你想合并的通道顺序与 BGR 不同,例如 RGB(红绿蓝)顺序,你需要相应地调整通道的顺序:

rgb_image = cv2.merge([r, g, b])

请注意,cv2.merge() 要求所有输入图像都具有相同的大小和类型。如果它们的大小或类型不匹配,函数将抛出一个错误。

在处理图像时,理解通道的顺序和类型非常重要,因为不同的图像处理库和函数可能会使用不同的通道顺序和数据类型。OpenCV 使用 BGR 顺序,而一些其他库(如 PIL/Pillow)则使用 RGB 顺序。因此,在将图像从一个库传递到另一个库时,可能需要进行通道顺序的转换。

6.边界填充

cv2.copyMakeBorder() 是 OpenCV 库中的一个函数,用于在图像周围创建边框。cv2.copyMakeBorder(src,top,bottom,left,right,borderType,value)

下面是该函数的参数及其解释:

src:要处理的输入图像。
top:在源图像的顶部添加的像素数目。
bottom:在源图像的底部添加的像素数目。
left:在源图像的左侧添加的像素数目。
right:在源图像的右侧添加的像素数目。
borderType:边框类型,可以是以下之一:
cv2.BORDER_CONSTANT:添加一个常量值的边框。此时需要提供一个value参数,用于指定常量值。
cv2.BORDER_REPLICATE:复制源图像的边界像素。
cv2.BORDER_REFLECT:对源图像的边界进行反射,比如:fedcba|abcdefgh|hgfedcb
cv2.BORDER_REFLECT_101:对源图像的边界进行反射,但略微不同,比如:gfedcb|abcdefgh|gfedcba
cv2.BORDER_WRAP:对源图像的边界进行包装,比如:cdefgh|abcdefgh|abcdefg
value(可选):当borderType为cv2.BORDER_CONSTANT时,指定的常量值。
该函数返回一个新的图像,其大小为原始图像加上指定边框大小,并且根据指定的边框类型进行填充。

 示例代码:

image = cv2.imread('./img/dog21.png')
image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
# 定义填充参数
top_border = 10
bottom_border = 10
left_border = 10
right_border = 10# 使用常数填充,填充值为0
bordered_image_constant = cv2.copyMakeBorder(image, top_border, bottom_border, left_border, right_border, cv2.BORDER_CONSTANT, value=0)# 使用边界复制
bordered_image_replicate = cv2.copyMakeBorder(image, top_border, bottom_border, left_border, right_border, cv2.BORDER_REPLICATE)# 使用边界反射
bordered_image_reflect = cv2.copyMakeBorder(image, top_border, bottom_border, left_border, right_border, cv2.BORDER_REFLECT)# 使用边界反射101
bordered_image_reflect_101 = cv2.copyMakeBorder(image, top_border, bottom_border, left_border, right_border, cv2.BORDER_REFLECT_101)# 使用边界包裹
bordered_image_wrap = cv2.copyMakeBorder(image, top_border, bottom_border, left_border, right_border, cv2.BORDER_WRAP)# 创建子图
fig, ((ax1, ax2, ax3),(ax4, ax5,ax6)) = plt.subplots(2, 3, figsize=(20, 10), sharex=True, sharey=True)# 显示图像
ax1.imshow(image.copy())
ax1.set_title('original')
ax2.imshow(bordered_image_constant)
ax2.set_title('constant')
ax3.imshow(bordered_image_replicate, cmap='gray')
ax3.set_title('replicate')
ax4.imshow(bordered_image_reflect, cmap='gray')
ax4.set_title('reflect')
ax5.imshow(bordered_image_reflect_101, cmap='gray')
ax5.set_title('reflect_101')
ax6.imshow(bordered_image_wrap, cmap='gray')
ax6.set_title('wrap')
plt.show()

Python OpenCV库中的边界填充通常用于图像处理,比如二值化后的边缘增强、腐蚀膨胀操作后的填补空洞等。边界填充函数cv2.floodFill()是一个常用工具。这个函数会在指定起点周围填充特定颜色,直到遇到另一个更大区域或者达到边界条件。

以下是一个基本的使用示例:

import cv2
import numpy as np# 假设img是你的输入图像,前景像素是白色,背景是黑色
img = ...  # 你的图像数组# 定义起始点和填充的颜色
seed_point = (x, y)  # 起始填充点的坐标
new_color = (255, 255, 255)  # 填充的新颜色,这里是白色# 应用 floodFill
mask = np.zeros(img.shape[:2], dtype=np.uint8)
cv2.floodFill(img, mask, seed_point, new_color)# 显示结果
cv2.imshow("Filled Image", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
 7.数值计算

 

 cv2.add()函数中,如果像素点相加之和超过255则最大只能为255,不超过则不变

8.图像融合

两个图片shape值如果不一样不能做数值计算

resize函数

 

 

 1.图像尺寸调整
cv2.resize(img,(w,h)):调整图像img尺寸到w*h;
cv2.resize(img,(0,0),fx=3,fy=1):将w、h设置为0,fx为x向相对原图的比例,fy为y向相对于原图的比例,fx与fy大于1时图像为放大,小于1时为缩小。
2.图像融合
imgf=cv2.addWeighted(img1,α,img2,β,b)
img1与img2为需要融合的图像
α和β为两张图的融合系数
b为图像偏置量
计算方式:imgf=α×img1+β×img2+b
注意:两张可融合的图片必须尺寸一致,如不一致,需通过resize操作调整为一致方可融合
示例代码

import cv2
import os
os.chdir('e://text')
img1=cv2.imread('wanzi.png')
img2=cv2.imread('car.jpg')
def cv_show(name,img):cv2.imshow(name,img)cv2.waitKey(0)cv2.destroyAllWindows()
print(img1.shape)
print(img2.shape)
img2=cv2.resize(img2,(396,203))
#注意此句,img.shape的数值时(h,w),而resize需要的输入是(w,h),两者是颠倒的
print(img2.shape)
a=cv2.addWeighted(img,1,img2,0.5,0)
#注意:相加后,像素中加和超过255的值会被置为255
cv_show('a',a)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/872582.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

华为USG6000V防火墙安全策略用户认证

目录 一、实验拓扑图 二、要求 三、IP地址规划 四、实验配置 1&#x1f923;防火墙FW1web服务配置 2.网络配置 要求1&#xff1a;DMZ区内的服务器&#xff0c;办公区仅能在办公时间内(9:00-18:00)可以访问&#xff0c;生产区的设备全天可以访问 要求2&#xff1a;生产区不…

集群架构-web服务器(接入负载均衡+数据库+会话保持redis)--15454核心配置详解

紧接着前面的集群架构深化—中小型公司&#xff08;拓展到大型公司业务&#xff09;–下面图简单回顾一下之前做的及故障核心知识总结&#xff08;等后期完全整理后&#xff0c;上传资源希望能帮大家&#xff09; web集群架构-接入负载均衡部署web02服务器等 web集群-搭建web0…

拒绝废话:computed、watch和methods的区分和使用场景

computed、watch和methods是用于处理数据和响应数据变化的不同方式&#xff0c;三者之间有什么不同呢&#xff0c;贝格前端工场作为10年前端老司机&#xff0c;用浅显的语言给大家分享一下。 computed&#xff1a; computed属性是用来定义一个基于依赖的响应式属性。它会根据…

OrangePi 学习摘录

文章目录 1. 参考2. 开发板 Orange-Pi-CM4 预览3. 烧录 Linux 镜像到 TF 卡中4. 制作桌面版镜像qemu/chroot 5. Armbian6. 编译 1. 参考 淘宝 香橙派官网 Orange-Pi-3B Orange-Pi-CM4 基于docker构建香橙派zero系统构建环境 2. 开发板 Orange-Pi-CM4 预览 3. 烧录 Linux 镜像…

微信小程序基本语法

官网 https://developers.weixin.qq.com/miniprogram/dev/framework/ 视频教程&#xff1a;尚硅谷微信小程序开发教程&#xff0c;2024最新微信小程序项目实战&#xff01; 仿慕尚花坊项目源码&#xff1a;https://gitee.com/abcdfdewrw/flower-workshop 目录 一&#xff0c;初…

【深度学习】BeautyGAN: 美妆,化妆,人脸美妆

https://www.sysu-hcp.net/userfiles/files/2021/03/01/3327b564380f20c9.pdf 【深度学习】BeautyGAN: Instance-level Facial Makeup Transfer with Deep Generative Adversarial Network BeautyGAN: Instance-level Facial Makeup Transfer with Deep Generative Adversaria…

交叉编译ethtool(ubuntu 2018)

参考文章&#xff1a;https://www.cnblogs.com/nazhen/p/16800427.html https://blog.csdn.net/weixin_43128044/article/details/137953913 1、下载相关安装包 //ethtool依赖libmul git clone http://git.netfilter.org/libmnl //ethtool源码 git clone http://git.kernel.or…

国家护网行动面试题总结

一、信息收集流程 1.获取域名的 whois 信息 , 获取注册者邮箱姓名电话等。 2.通过站长之家、明小子、 k8 、站长之家等查询服务器旁站以及子域名站点&#xff0c;因为主站一般 比较难&#xff0c;所以先看看旁站有没有通用性的 cms 或者其他漏洞。 3、通过 DNS 域传送…

PriorityQueue 阅读记录

1、前言 1、优先队列&#xff0c;底层通过数组来构造树&#xff08;二叉树) 来实现的。 2、默认是最小堆&#xff08;取出来的是最小值)&#xff0c;可以通过传入一个比较器 comparator 来构造一个最大堆。 3、传入的参数不能为空&#xff0c;否则抛出NPE问题。 4、最大堆的…

Study--Oracle-07-ASM自动存储管理(一)

一、ASM实例和数据库实例对应关系 1、ASM是Oracle 10g R2中为了简化Oracle数据库的管理而推出来的一项新功能&#xff0c;这是Oracle自己提供的卷管理器&#xff0c;主要用于替代操作系统所提供的LVM&#xff0c;它不仅支持单实例&#xff0c;同时对RAC的支持也是非常好。ASM可…

汽车开发阶段(OTS/VFF/PVS/OS/SOP)

OTS&#xff1a;即英语中的Off Tooling Sample&#xff0c;通常被称为工装样件。它指的是通过配套设备、工装夹具以及模具制造出来的样品&#xff0c;但并不强调生产的时间效率&#xff0c;主要用于验证产品的设计能力。 VFF&#xff1a;在德语中表示为Vorserien Freigabefahr…

集成excel工具:自定义导入回调监听器、自定义类型转换器、web中的读、捕获文件格式转换错误ExcelDataConvertException

文章目录 I 封装导入导出1.1 定义工具类1.2 自定义读回调监听器: 回调业务层处理导入数据1.3 定义文件导入上下文1.4 定义回调协议II 自定义转换器2.1 自定义枚举转换器2.2 日期转换器2.3 时间、日期、月份之间的互转2.4 LongConverterIII web中的读3.1 使用默认回调监听器3.2…

C++基础知识:C++内存分区模型,全局变量和静态变量以及常量,常量区,字符串常量和其他常量,栈区,堆区,代码区和全局区

1.C内存分区模型 C程序在执行时&#xff0c;将内存大方向划分为4个区域 代码区:存放函数体的二进制代码&#xff0c;由操作系统进行管理的&#xff08;在编译器中所书写的代码都会存放在这个空间。&#xff09; 全局区:存放全局变量和静态变量以及常量 栈区:由编译器自动分…

Mysql具体数据操作和表的约束(上)

表中数据的增删改查 插入数据(添加数据) 1.按指定字段插入数据:insert into <表名> (字段1,字段2,...) values (),(),.... 注意1:values后面的括号是指行数(几条记录),一个括号表示插入一条记录,多个括号以此类推 注意2:values后面括号内部插入的数据…

【python学习】第三方库之pandas库的定义、特点、功能、使用场景和代码示例

引言 pandas是一个强大的Python库&#xff0c;用于数据分析和数据处理。它基于NumPy&#xff0c;提供了灵活的数据结构&#xff08;Series和DataFrame&#xff09;和数据操作功能&#xff0c;是数据科学和机器学习中不可或缺的工具 文章目录 引言一、安装pandas第三方库二、pan…

nginx反向代理实例

一. 准备工作 1.1 ngnix的安装 nginx基本概念和安装-CSDN博客 1.2 安装tomcat tomcat服务器是一个免费的开放源代码的Web应用服务器&#xff0c;属于轻量级应用服务器&#xff0c;适用于中小型系统和并发访问用户不是很多的情况。 前往官网网站&#xff1a;Apache Tomcat - Ap…

C++迈向精通:模板中的引用与remove_reference原理

remove_reference 原理 模板中的引用参数 在模板中&#xff0c;双 &‘ 会被解析为“引用”&#xff0c;这个“引用”可以是“左值”引用&#xff0c;也可以是“右值”引用。 例如&#xff1a; template <typename T> void func(T &&a) {std::cout <&l…

从零开始接触人工智能大模型,该如何学习?

人工智能是计算机科学领域中最具前瞻性和影响力的技术之一。它是一种智慧型算法&#xff0c;能够模拟人类的思维过程&#xff0c;处理大量的数据和信息&#xff0c;从而发现隐藏在其中的规律和趋势。人工智能的应用范围非常广泛&#xff0c;包括语音识别、图像识别、自然语言处…

《简历宝典》14 - 简历中“项目经历”,实战讲解,前端篇

上一节我们针对项目经历做了内功式的讲解&#xff0c;为了加深读者的印象&#xff0c;可以更轻松的套用到自己的简历上&#xff0c;本章继续从前端开发、Java开发以及软件测试的三个角度&#xff0c;再以校招和初级、中级以及高级三个维度分别入手&#xff0c;以实战讲解的形式…

gihub导入gitee仓库实现仓库同步

昨天在GitHub里导入了gitee仓库&#xff0c;但是在仓库同步这里卡了很久&#xff0c;因为网上大多数都是从github导入gitee&#xff0c;然后github生成token放入实现同步&#xff0c;但是我找到一种更为方便的&#xff01; 1.首先找到项目文件下的.git文件里的config文件 2.在…