c++初阶知识——类和对象(下)

目录

1.构造函数深入

2.类型转换

3.static成员 

4.友元

5.内部类

6.匿名对象 

7.对象拷⻉时的编译器优化


1.构造函数深入

(1)前我们实现构造函数时,初始化成员变量主要使⽤函数体内赋值,构造函数初始化还有⼀种⽅式,就是初始化列表,初始化列表的使⽤⽅式是以⼀个冒号开始,接着是⼀个以逗号分隔的数据成员列表,每个"成员变量"后⾯跟⼀个放在括号中的初始值或表达式。

#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
using namespace std;
class Data
{Data(int year=1900, int month=1, int day=1):_year(year),_month(month),_day(day){}
private:int _year;int _month;int _day;
};
int main()
{return 0;
}

(2)每个成员变量在初始化列表中只能出现⼀次语法理解上初始化列表可以认为是每个成员变量定义初始化的地⽅。 

(3)引⽤成员变量const成员变量没有默认构造的类类型变量,必须放在初始化列表位置进⾏初始化,否则会编译报错。

(4)C++11⽀持在成员变量声明的位置给缺省值,这个缺省值主要是给没有显⽰在初始化列表初始化的成员使⽤的。

(5)尽量使⽤初始化列表初始化,因为那些你不在初始化列表初始化的成员也会⾛初始化列表,如果这个成员在声明位置给了缺省值,初始化列表会⽤这个缺省值初始化。如果你没有给缺省值,对于没有显⽰在初始化列表初始化的内置类型成员是否初始化取决于编译器,C++并没有规定。对于没有显⽰在初始化列表初始化的⾃定义类型成员会调⽤这个成员类型的默认构造函数,如果没有默认构造会编译错误。

(6)初始化列表中按照成员变量在类中声明顺序进⾏初始化,跟成员在初始化列表出现的的先后顺序⽆关。建议声明顺序和初始化列表顺序保持⼀致。

总结

每个成员都要走初始化列表:

1.在初始化列表初始化的成员

2.没有在初始化列表的成员

 (1)声明的地方有缺省值用缺省值

 (2)没有缺省值

       a.内置类型,不确定,看编译器,大概率是随机值

       b.自定义类型,调用默认构造,没有默认构造就编译报错

3.引用  const  没有默认构造自定义,必须在初始化列表初始化

2.类型转换

(1)C++⽀持内置类型隐式类型转换为类类型对象,需要有相关内置类型为参数的构造函数

(2)构造函数前⾯加explicit就不再⽀持隐式类型转换

#include<iostream>
using namespace std;
class A
{
public:
// 构造函数explicit就不再⽀持隐式类型转换
// explicit A(int a1)
A(int a1)
:_a1(a1)
{}
//explicit A(int a1, int a2)
A(int a1, int a2)
:_a1(a1)
,_a2(a2)
{}
void Print()
{
cout << _a1 << " " << _a2 << endl;
}
private:
int _a1 = 1;
int _a2 = 2;
};
int main()
{
// 1构造⼀个A的临时对象,再⽤这个临时对象拷⻉构造aa3
// 编译器遇到连续构造+拷⻉构造->优化为直接构造
A aa1 = 1;
aa1.Print();
const A& aa2 = 1;
// C++11之后才⽀持多参数转化
A aa3 = { 2,2 };
return 0;
}

3.static成员 

(1)⽤static修饰的成员变量,称之为静态成员变量,静态成员变量⼀定要在类外进⾏初始化

(2)静态成员变量为所有类对象所共享,不属于某个具体的对象,不存在对象中,存放在静态区。

 (3)⽤static修饰的成员函数,称之为静态成员函数,静态成员函数没有this指针

(4)⾮静态的成员函数,可以访问任意的静态成员变量和静态成员函数。

(5)突破类域就可以访问静态成员,可以通过类名::静态成员 或者 对象.静态成员 来访问静态成员变量和静态成员函数。

(6)突破类域就可以访问静态成员,可以通过类名::静态成员 或者 对象.静态成员 来访问静态成员变量和静态成员函数。

(7)静态成员变量不能在声明位置给缺省值初始化,因为缺省值是个构造函数初始化列表的,静态成员变量不属于某个对象,不⾛构造函数初始化列表。

4.友元

(1)友元提供了⼀种突破类访问限定符封装的⽅式,友元分为:友元函数和友元类,在函数声明或者类声明的前⾯加friend,并且把友元声明放到⼀个类的⾥⾯。

(2)外部友元函数可访问类的私有和保护成员,友元函数仅仅是⼀种声明,他不是类的成员函数。

(3)友元函数可以在类定义的任何地⽅声明,不受类访问限定符限制。

(4)⼀个函数可以是多个类的友元函数。

(5)友元类中的成员函数都可以是另⼀个类的友元函数,都可以访问另⼀个类中的私有和保护成员

(6)友元类中的成员函数都可以是另⼀个类的友元函数,都可以访问另⼀个类中的私有和保护成员

(7)友元类关系不能传递,如果A是B的友元, B是C的友元,但是A不是C的友元。

(8)有时提供了便利。但是友元会增加耦合度,破坏了封装,所以友元不宜多⽤。

#include<iostream>
using namespace std;
class A
{
// 友元声明
friend class B;
private:
int _a1 = 1;
int _a2 = 2;
};
class B
{
public:
void func1(const A& aa)
{
cout << aa._a1 << endl;
cout << _b1 << endl;
}
void func2(const A& aa)
{
cout << aa._a2 << endl;
cout << _b2 << endl;
}
private:
int _b1 = 3;
int _b2 = 4;
};
int main()
{
A aa;
B bb;
bb.func1(aa);
bb.func1(aa);
return 0;
}

5.内部类

(1)如果⼀个类定义在另⼀个类的内部,这个内部类就叫做内部类。内部类是⼀个独⽴的类,跟定义在全局相⽐,他只是受外部类类域限制和访问限定符限制,所以外部类定义的对象中不包含内部类。 

(2)内部类默认是外部类的友元类。

(3)内部类本质也是⼀种封装,当A类跟B类紧密关联,A类实现出来主要就是给B类使⽤,那么可以考虑把A类设计为B的内部类,如果放到private/protected位置,那么A类就是B类的专属内部类,其他地⽅都⽤不了。

#include<iostream>
using namespace std;
class A
{
private:
static int _k;
int _h = 1;
public:
class B // B默认就是A的友元
{
public:
void foo(const A& a)
{
cout << _k << endl;
//OK
cout << a._h << endl;
//OK
}
};
};
int A::_k = 1;
int main()
{
cout << sizeof(A) << endl;
A::B b;
A aa;
b.foo(aa);
return 0;
}

6.匿名对象 

(1)⽤ 类型(实参) 定义出来的对象叫做匿名对象,相⽐之前我们定义的 类型 对象名(实参) 定义出来的叫有名对象

(2)匿名对象⽣命周期只在当前⼀⾏,⼀般临时定义⼀个对象当前⽤⼀下即可,就可以定义匿名对象。

class A
{
public:
A(int a = 0)
:_a(a)
{
cout << "A(int a)" << endl;
}
~A()
{
cout << "~A()" << endl;
}
private:
int _a;
};
class Solution {
public:
int Sum_Solution(int n) {
//...
return n;
}
};
int main()
{
A aa1;
// 不能这么定义对象,因为编译器⽆法识别下⾯是⼀个函数声明,还是对象定义
//A aa1();
// 但是我们可以这么定义匿名对象,匿名对象的特点不⽤取名字,
// 但是他的⽣命周期只有这⼀⾏,我们可以看到下⼀⾏他就会⾃动调⽤析构函数
A();
A(1);
A aa2(2);
// 匿名对象在这样场景下就很好⽤,当然还有⼀些其他使⽤场景,这个我们以后遇到了再说
Solution().Sum_Solution(10);
return 0;
}

7.对象拷⻉时的编译器优化

(1)现代编译器会为了尽可能提⾼程序的效率,在不影响正确性的情况下会尽可能减少⼀些传参和传参过程中可以省略的拷⻉。

(2)如何优化C++标准并没有严格规定,各个编译器会根据情况⾃⾏处理。当前主流的相对新⼀点的编译器对于连续⼀个表达式步骤中的连续拷⻉会进⾏合并优化,有些更新更"激进"的编译还会进⾏跨⾏跨表达式的合并优化。

#include<iostream>
using namespace std;
class A
{
public:
A(int a = 0)
:_a1(a)
{
cout << "A(int a)" << endl;
}
A(const A& aa)
:_a1(aa._a1)
{
cout << "A(const A& aa)" << endl;
}
A& operator=(const A& aa)
{
cout << "A& operator=(const A& aa)" << endl;
if (this != &aa)
_a1 = aa._a1;
}
return *this;
}
~A()
{
cout << "~A()" << endl;
}
private:
int _a1 = 1;
};
void f1(A aa)
{}
A f2()
{
A aa;
return aa;
}
int main()
{
// 传值传参
A aa1;
f1(aa1);
cout << endl;
// 隐式类型,连续构造+拷⻉构造->优化为直接构造
f1(1);
// ⼀个表达式中,连续构造+拷⻉构造->优化为⼀个构造
f1(A(2));
cout << endl;
cout << "***********************************************" << endl;
// 传值返回
// 返回时⼀个表达式中,连续拷⻉构造+拷⻉构造->优化⼀个拷⻉构造 (vs2019)
// ⼀些编译器会优化得更厉害,进⾏跨⾏合并优化,直接变为构造。(vs2022)
f2();
cout << endl;
// 返回时⼀个表达式中,连续拷⻉构造+拷⻉构造->优化⼀个拷⻉构造 (vs2019)
// ⼀些编译器会优化得更厉害,进⾏跨⾏合并优化,直接变为构造。(vs2022)
A aa2 = f2();
cout << endl;
// ⼀个表达式中,连续拷⻉构造+赋值重载->⽆法优化
aa1 = f2();
cout << endl;
return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/872560.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++迈向精通:模板中的引用与remove_reference原理

remove_reference 原理 模板中的引用参数 在模板中&#xff0c;双 &‘ 会被解析为“引用”&#xff0c;这个“引用”可以是“左值”引用&#xff0c;也可以是“右值”引用。 例如&#xff1a; template <typename T> void func(T &&a) {std::cout <&l…

conda 环境打包与使用

conda 环境导出 使用 Conda 打包环境&#xff0c;可以创建一个可重复使用的环境文件&#xff0c;便于在不同的机器上重新创建相同的环境。以下是具体的步骤&#xff1a; 1. 创建 Conda 环境 如果你还没有创建一个 Conda 环境&#xff0c;可以使用以下命令创建一个新环境&…

Unsloth 微调 Llama 3

本文参考&#xff1a; https://colab.research.google.com/drive/135ced7oHytdxu3N2DNe1Z0kqjyYIkDXp 改编自&#xff1a;https://blog.csdn.net/qq_38628046/article/details/138906504 文章目录 一、项目说明安装相关依赖下载模型和数据 二、训练1、加载 model、tokenizer2、…

从零开始接触人工智能大模型,该如何学习?

人工智能是计算机科学领域中最具前瞻性和影响力的技术之一。它是一种智慧型算法&#xff0c;能够模拟人类的思维过程&#xff0c;处理大量的数据和信息&#xff0c;从而发现隐藏在其中的规律和趋势。人工智能的应用范围非常广泛&#xff0c;包括语音识别、图像识别、自然语言处…

高精度减法(C++)

【题目描述】 求两个大的正整数相减的差。 【输入】 共2行&#xff0c;第1行是被减数a&#xff0c;第2行是减数b。每个大整数不超过200位&#xff0c;不会有多余的前导零。注意&#xff0c;a 可能小于 b。 【输出】 一行&#xff0c;即所求的差。 【输入样例】 99999999…

《简历宝典》14 - 简历中“项目经历”,实战讲解,前端篇

上一节我们针对项目经历做了内功式的讲解&#xff0c;为了加深读者的印象&#xff0c;可以更轻松的套用到自己的简历上&#xff0c;本章继续从前端开发、Java开发以及软件测试的三个角度&#xff0c;再以校招和初级、中级以及高级三个维度分别入手&#xff0c;以实战讲解的形式…

gihub导入gitee仓库实现仓库同步

昨天在GitHub里导入了gitee仓库&#xff0c;但是在仓库同步这里卡了很久&#xff0c;因为网上大多数都是从github导入gitee&#xff0c;然后github生成token放入实现同步&#xff0c;但是我找到一种更为方便的&#xff01; 1.首先找到项目文件下的.git文件里的config文件 2.在…

Python实战MySQL之数据库操作全流程详解

概要 MySQL是一种广泛使用的关系型数据库管理系统,Python可以通过多种方式与MySQL进行交互。本文将详细介绍如何使用Python操作MySQL数据库,包括安装必要的库、连接数据库、执行基本的CRUD(创建、读取、更新、删除)操作,并包含具体的示例代码,帮助全面掌握这一过程。 准…

Vue 和 React 框架实现滚动缓冲区

Vue 实现 <template><div id"app" scroll"handleScroll"><!-- 页面内容 --><div v-for"item in items" :key"item">{{ item }}</div></div> </template><script> export default {d…

dom4j 操作 xml 之按照顺序插入标签

最近学了一下 dom4j 操作 xml 文件&#xff0c;特此记录一下。 public class Dom4jNullTagFiller {public static void main(String[] args) throws DocumentException {SAXReader reader new SAXReader();//加载 xml 文件Document document reader.read("C:\\Users\\24…

基于jeecgboot-vue3的Flowable流程支持bpmn流程设计器与仿钉钉流程设计器-编辑多版本处理

因为这个项目license问题无法开源&#xff0c;更多技术支持与服务请加入我的知识星球。 1、前端编辑带有仿钉钉流程的处理 /** 编辑流程设计弹窗页面 */const handleLoadXml (row) > {console.log("handleLoadXml row",row)const params {flowKey: row.key,ver…

搜集日志。

logstash 负责&#xff1a; 接收数据 input — 解析过滤并转换数据 filter(此插件可选) — 输出数据 output input — decode — filter — encode — output elasticsearch 查询和保存数据 Elasticsearch 去中心化集群 Data node 消耗大量 CPU、内存和 I/O 资源 分担一部分…

四、GD32 MCU 常见外设介绍

系统架构 1.RCU 时钟介绍 众所周知&#xff0c;时钟是MCU能正常运行的基本条件&#xff0c;就好比心跳或脉搏&#xff0c;为所有的工作单元提供时间 基数。时钟控制单元提供了一系列频率的时钟功能&#xff0c;包括多个内部RC振荡器时钟(IRC)、一个外部 高速晶体振荡器时钟(H…

Docker修改Postgresql密码

在Docker环境中&#xff0c;对已运行的PostgreSQL数据库实例进行密码更改是一项常见的维护操作。下面将详述如何通过一系列命令行操作来实现这一目标。 修改方式 查看容器状态及信息 我们需要定位到正在运行的PostgreSQL容器以获取其相关信息。执行以下命令列出所有正在运行…

Mongodb多键索引中索引边界的混合

学习mongodb&#xff0c;体会mongodb的每一个使用细节&#xff0c;欢迎阅读威赞的文章。这是威赞发布的第93篇mongodb技术文章&#xff0c;欢迎浏览本专栏威赞发布的其他文章。如果您认为我的文章对您有帮助或者解决您的问题&#xff0c;欢迎在文章下面点个赞&#xff0c;或者关…

安全防御---防火墙双击热备与带宽管理

目录 一、实验拓扑 二、实验需求 三、实验的大致思路 四、实验过程 4、基础配置 4.1 FW4的接口信息 4.2 新建办公&#xff0c;生产&#xff0c;游客&#xff0c;电信&#xff0c;移动安全区域 4.3 接口的网络配置 生产区:10.0.1.2/24 办公区:10.0.2.2/24 4.4 FW4的…

极地生产力自主采样系统的观测:融池比例统计 MEDEA 融池比例数据集

Observations from the Autonomous Polar Productivity Sampling System. 极地生产力自主采样系统的观测结果 简介 该项目是美国国家航空航天局 ICESCAPE 大型项目的一部分&#xff0c;旨在研究浮游植物丰度的长期季节性变化与整个生长季节在波弗特海和楚科奇海测量到的海冰…

Spring与设计模式实战之策略模式

Spring与设计模式实战之策略模式 引言 在现代软件开发中&#xff0c;设计模式是解决常见设计问题的有效工具。它们提供了经过验证的解决方案&#xff0c;帮助开发人员构建灵活、可扩展和可维护的系统。本文将探讨策略模式在Spring框架中的应用&#xff0c;并通过实际例子展示…

Linux 驱动开发 举例

Linux驱动开发涉及编写内核模块或设备驱动程序&#xff0c;以便让Linux内核能够识别和控制硬件设备。以下是一个简单的Linux驱动开发示例&#xff0c;这个示例将展示如何创建一个简单的字符设备驱动。 示例&#xff1a;简单的字符设备驱动 1. 定义设备驱动结构 首先&#xf…

深度学习损失计算

文章目录 深度学习损失计算1.如何计算当前epoch的损失&#xff1f;2.为什么要计算样本平均损失&#xff0c;而不是计算批次平均损失&#xff1f; 深度学习损失计算 1.如何计算当前epoch的损失&#xff1f; 深度学习中的损失计算&#xff0c;通常为数据集的平均损失&#xff0…