复旦大学武利民( Limin Wu)和李卓( Zhuo Li)团队,在《Nature Communications》上发布了一篇题为“High-density, highly sensitive sensor array of spiky carbon nanospheres for strain field mapping”的论文。论文内容如下:
一、 摘要
在工程应用中,准确地映射应变分布对于评估应力集中和估计疲劳寿命至关重要。然而,传统的应变传感器阵列在平衡灵敏度和传感密度以实现有效的应变映射方面面临巨大挑战。在本研究中,作者基于带刺纳米球间的F-N隧穿效应利用单分散尖刺状碳纳米球和聚二甲基硅氧烷制备了一种高密度应变传感器阵列,所制备的传感器在0%到60%的应变范围内可以实现高达70,000的灵敏度、100pixel /平方厘米的感测密度并保持99%以上的对数线性。每个单元中尖刺状碳纳米球高度有序组装也确保了单元间高度一致性(标准偏差≤3.82%)。此外,该传感器阵列可以共形覆盖不同的表面,从而能够准确地获取应变分布。该感测阵列为柔性电子、软体机器人、生物力学和结构健康监测等各种应用中的应变场映射提供了便捷的方法。
二、背景介绍
应变场映射提供了整个结构中应变的全面分布,因此开启了许多传统离散应变传感器无法实现的机会。目前,光学方法主要用于全场应变映射,因为它们具有较高的空间分辨率。然而,该方法容易受到光照条件的影响,并且通常需要复杂的离线计算才能将光学数据转换为应变场。在这方面,可拉伸应变传感器阵列以其更高的可靠性和更低的计算复杂度而成为一种有前途的替代方案。但是,它们目前的空间分辨率对于许多实际应用来说是不足的。因此,提高传感器密度以获得理想的空间分辨率来进行应变场映射是至关重要的。
尽管如此,应变传感阵列的设计在平衡传感密度和灵敏度方面面临巨大挑战,这两个参数都是这种阵列的关键参数。当前的柔性应变传感器主要依赖于三种典型机理来获得高灵敏度:裂纹扩展、接触电阻和渗流机理。裂纹扩展传感器只能监测垂直于裂纹方向的变形。为实现全方位感知,通常需要多个传感器,常常以玫瑰花状配置或多层堆叠结构的形式进行排列。然而,这种方法不可避免地增加了传感单元的尺寸,降低了传感密度。基于接触电阻和渗流机理的传感器依赖于导电通路的断裂来进行感应。由于导电通路的分布及其在拉伸过程中的变化在不同的传感单元之间是随机变化,因此传感器的尺寸必须足够大,来确保单元间的一致性,但这也限制了传感器的传感密度。
为了解决这个问题,作者提出了一种基于Fowler-Nordheim(F-N)隧穿效应的传感机理,该机理基于有序排列