了解Adam和RMSprop优化算法

优化算法是机器学习和深度学习模型训练中至关重要的部分。本文将详细介绍Adam(Adaptive Moment Estimation)和RMSprop(Root Mean Square Propagation)这两种常用的优化算法,包括它们的原理、公式和具体代码示例。

RMSprop算法

RMSprop算法由Geoff Hinton提出,是一种自适应学习率的方法,旨在解决标准梯度下降在处理非平稳目标时的问题。其核心思想是对梯度的平方值进行指数加权平均,并使用这个加权平均值来调整每个参数的学习率。

RMSprop算法公式
  1. 计算梯度:

    g_t = \nabla_{\theta} J(\theta_t)

    其中,g_t 是第 t 次迭代时的梯度,J(\theta_t) 是损失函数,\theta_t​ 是当前参数。

  2. 计算梯度的平方和其指数加权平均值:

    E[g^2]_t = \gamma E[g^2]_{t-1} + (1 - \gamma) g_t^2

    其中,E[g^2]_t 是梯度平方的指数加权平均,\gamma 是衰减率,通常取值为0.9。

  3. 更新参数:

    \theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{E[g^2]_t + \epsilon}} g_t

    其中,\eta 是学习率,\epsilon 是为了防止除零的小常数,通常取值为 10^{-8}

RMSprop算法的实现

下面是用Python和TensorFlow实现RMSprop算法的代码示例:

import tensorflow as tf# 初始化参数
learning_rate = 0.001
rho = 0.9
epsilon = 1e-08# 创建RMSprop优化器
optimizer = tf.keras.optimizers.RMSprop(learning_rate=learning_rate, rho=rho, epsilon=epsilon)# 定义模型和损失函数
model = tf.keras.Sequential([...])  # 定义你的模型
loss_fn = tf.keras.losses.MeanSquaredError()# 编译模型
model.compile(optimizer=optimizer, loss=loss_fn)# 训练模型
model.fit(train_data, train_labels, epochs=10)
Adam算法

Adam算法结合了RMSprop和动量(Momentum)的思想,是一种自适应学习率优化算法。Adam算法在处理稀疏梯度和非平稳目标时表现出色,因此被广泛应用于深度学习模型的训练中。

Adam算法公式
  1. 计算梯度:

    g_t = \nabla_{\theta} J(\theta_t)
  2. 计算梯度的一阶矩估计和二阶矩估计的指数加权平均值:

    m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t                                                                                                                                                                                                                v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2                                                                                                                                                                                                                                                     其中,m_t​ 是梯度的一阶矩估计,v_t​ 是梯度的二阶矩估计,\beta_1​ 和 \beta_2​ 分别是动量和均方根的衰减率,通常取值为0.9和0.999。
  3. 进行偏差校正:

    \hat{m}_t = \frac{m_t}{1 - \beta_1^t}                                                                                                                            ​\hat{v}_t = \frac{v_t}{1 - \beta_2^t}
  4. 更新参数:

    \theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t
Adam算法的实现

下面是用Python和TensorFlow实现Adam算法的代码示例:

import tensorflow as tf# 初始化参数
learning_rate = 0.001
beta_1 = 0.9
beta_2 = 0.999
epsilon = 1e-08# 创建Adam优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate, beta_1=beta_1, beta_2=beta_2, epsilon=epsilon)# 定义模型和损失函数
model = tf.keras.Sequential([...])  # 定义你的模型
loss_fn = tf.keras.losses.MeanSquaredError()# 编译模型
model.compile(optimizer=optimizer, loss=loss_fn)# 训练模型
model.fit(train_data, train_labels, epochs=10)
总结

RMSprop和Adam都是深度学习中常用的优化算法,各自有其优势。RMSprop通过调整每个参数的学习率来处理非平稳目标,而Adam则结合了动量和均方根的思想,使得它在处理稀疏梯度和非平稳目标时表现优异。理解并灵活运用这些优化算法,将有助于提高模型训练的效率和效果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/869389.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

配置路由器支持Telnet操作 计网实验

实验要求: 假设某学校的网络管理员第一次在设备机房对路由器进行了初次配置后,他希望以后在办公室或出差时也可以对设备进行远程管理,现要在路由器上做适当配置,使他可以实现这一愿望。 本实验以一台R2624路由器为例,…

OpenCV MEI相机模型(全向模型)

文章目录 一、简介二、实现代码三、实现效果参考文献一、简介 对于针孔相机模型,由于硬件上的限制(如进光量等),他的视野夹角往往有效区域只有140度左右,因此就有研究人员为每个针孔相机前面再添加一个镜片,如下所示: 通过折射的方式增加了相机成像的视野,虽然仍然达不…

东方通Tongweb发布vue前端

一、前端包中添加文件 1、解压vue打包文件 以dist.zip为例,解压之后得到dist文件夹,进入dist文件夹,新建WEB-INF文件夹,进入WEB-INF文件夹,新建web.xml文件, 打开web.xml文件,输入以下内容 …

理解局域网技术:从基础到进阶

局域网(LAN)是在20世纪70年代末发展起来的,起初主要用于连接单位内部的计算机,使它们能够方便地共享各种硬件、软件和数据资源。局域网的主要特点是网络为一个单位所拥有,地理范围和站点数目均有限。 局域网技术在计算…

RequestContextHolder多线程获取不到request对象

RequestContextHolder多线程获取不到request对象,调用feign接口时,在Feign中的RequestInterceptor也获取不到HttpServletRequest问题解决方案。 1.RequestContextHolder多线程获取不到request对象 异常信息,报错如下: 2024-07-0…

(四)前端javascript中的数据结构之归并排序

归并排序是一种分治算法, 其思想是: 将原始数组切分成较小的数组,直到每个小数组只有一 个位置,接着将小数组归并成较大的数组,直到最后只有一个排序完毕的大数组 归并排序是第一个可以被实际使用的排序算法。它比前面…

SpringBoot实现简单AI问答(百度千帆)

第一步&#xff1a;注册并登录百度智能云&#xff0c;创建应用并获取自己的APIKey与SecretKey&#xff0c;参考网址&#xff1a; 点击去百度智能云 第二步&#xff1a;引入千帆的pom依赖 <dependency><groupId>com.baidubce</groupId><artifactId>q…

Jenkins 构建 Web 项目:构建服务器和部署服务器分离, 并且前后端在一起的项目

构建命令 #!/bin/bash cd ruoyi-ui node -v pnpm -v pnpm install pnpm build:prod # 将dist打包成dist.zip zip -r dist.zip dist cp dist.zip ../dist.zip

【Linux】动态库的制作与使用

&#x1f490; &#x1f338; &#x1f337; &#x1f340; &#x1f339; &#x1f33b; &#x1f33a; &#x1f341; &#x1f343; &#x1f342; &#x1f33f; &#x1f344;&#x1f35d; &#x1f35b; &#x1f364; &#x1f4c3;个人主页 &#xff1a;阿然成长日记 …

Linux——多线程(四)

前言 这是之前基于阻塞队列的生产消费模型中Enqueue的代码 void Enqueue(const T &in) // 生产者用的接口{pthread_mutex_lock(&_mutex);while(IsFull())//判断队列是否已经满了{pthread_cond_wait(&_product_cond, &_mutex); //满的时候就在此情况下等待// 1.…

C++中的模板(一)

首先&#xff0c;我们做一个简单的假设&#xff1a;假如现在你有穿越回古代的机会&#xff0c;然而你在古代的身份是曹植的管家&#xff0c;这天曹植写了一首《洛神赋》&#xff0c;他命令你把这首诗广泛的传播出去&#xff0c;那么在当时的技术条件下&#xff0c;你只能先制作…

自定义刷题工具-python实现

背景&#xff1a; 最近想要刷题&#xff0c;虽然目前有很多成熟的软件&#xff0c;网站。但是能够支持自定义的导入题库的非常少&#xff0c;或者是要么让你开会员&#xff0c;而直接百度题库的话&#xff0c;正确答案就摆在你一眼能看见的地方&#xff0c;看的时候总觉得自己…

Gymnasium 借游戏来学习人工智能

既然有了免费的linux系统GPU&#xff0c;干脆演示一下使用drivecolab套件来训练模型。 !apt-get install -y build-essential swig !pip install box2d-py !pip install gymnasium[all] !pip install gymnasium[atari] gymnasium[accept-rom-license] !pip install stable_bas…

项目收获总结--Redis的知识收获

一、概述 最近几天公司项目开发上线完成&#xff0c;做个收获总结吧~ 今天记录Redis的收获和提升。 二、Redis异步队列 Redis做异步队列一般使用 list 结构作为队列&#xff0c;rpush 生产消息&#xff0c;lpop 消费消息。当 lpop 没有消息的时候&#xff0c;要适当sleep再…

深度学习pytorch多机多卡网络配置桥接方法

1 安装pdsh&#xff08;Parallel Distributed Shell&#xff09; sudo apt install pdsh sudo -s # 切换超级用户身份 …

MATLAB备赛资源库(1)建模指令

一、介绍 MATLAB&#xff08;Matrix Laboratory&#xff09;是一种强大的数值计算环境和编程语言&#xff0c;特别设计用于科学计算、数据分析和工程应用。 二、使用 数学建模使用MATLAB通常涉及以下几个方面&#xff1a; 1. **数据处理与预处理**&#xff1a; - 导入和处理…

Echarts实现github提交记录图

最近改个人博客&#xff0c;看了github的提交记录&#xff0c;是真觉得好看。可以移植到自己的博客上做文章统计 效果如下 代码如下 <!DOCTYPE html> <html lang"en" style"height: 100%"><head><meta charset"utf-8"> …

240709_昇思学习打卡-Day21-文本解码原理--以MindNLP为例

240709_昇思学习打卡-Day21-文本解码原理–以MindNLP为例 今天做根据前文预测下一个单词&#xff0c;仅作简单记录及注释。 一个文本序列的概率分布可以分解为每个词基于其上文的条件概率的乘积 &#x1d44a;_0:初始上下文单词序列&#x1d447;: 时间步当生成EOS标签时&a…

企业级网关设计

tips&#xff1a;本文完全来源于卢泽龙&#xff01;&#xff01;&#xff01; 一、Gateway概述 1.1设计目标 1.2gateway基本功能 中文文档参考&#xff1a;https://cloud.tencent.com/developer/article/1403887?from15425 三大核心&#xff1a; 二、引入依赖和yaml配置…

如何在 PostgreSQL 中确保数据的异地备份安全性?

文章目录 一、备份策略1. 全量备份与增量备份相结合2. 定义合理的备份周期3. 选择合适的备份时间 二、加密备份数据1. 使用 PostgreSQL 的内置加密功能2. 使用第三方加密工具 三、安全的传输方式1. SSH 隧道2. SFTP3. VPN 连接 四、异地存储的安全性1. 云存储服务2. 内部存储设…