MacBook安装Git三种方式

MacBook安装Git三种方式

git官方下载地址: https://git-scm.com/download

方式一(推荐)

Git官网下载最新git Mac版本安装
下载地址: https://git-scm.com/download/mac
Binary installer 二进制安装
下载 git-2.27.0-intel-universal-mavericks.dmg
点击安装

查看版本
git version
回显如下:
git version 2.27.0

参考链接:
https://jingyan.baidu.com/article/6525d4b17bca4fac7c2e945c.html
https://www.jianshu.com/p/7edb6b838a2e

方式二

brew install git

方式三

安装Xcode
Xcode安装完太大,占用空间,如果不需要安装Xcode,最好选择方式一安装git

打开终端 输入 git 会弹出安装Xcode和安装git
或者 打开App Store搜索Xcode安装
Xcode是Apple官方IDE,功能非常强大,是开发Mac和IOS App的必选装备,而且是免费的。它集成了Git和一些插件,但是安装起来很大

安装完查看
git version
回显如下:
git version 2.27.0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/8691.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大语言模型

LLM通常基于Transformer架构构建,这类模型依赖于自注意力机制。Transformer能够高效利用计算资源,使得训练更大规模的语言模型成为可能。 例如,GPT-4包含数十亿个参数,在大规模数据集上训练,在其权重中有效编码了大量…

k8s使用helm部署Harbor镜像仓库并启用SSL

1、部署nfs存储工具 参照:https://zhaoll.blog.csdn.net/article/details/128155767 2、部署helm 有多种安装方式,根据自己的k8s版本选择合适的helm版本 参考:https://blog.csdn.net/qq_30614345/article/details/131669319 3、部署Harbo…

WPF实战学习笔记04-菜单导航

菜单导航 添加文件与文件夹 添加文件夹 ​ ./Extensions 添加文件[类型:用户控件] ./Views/IndexView.xaml ./Views/MemoView.xaml ./Views/TodoView.xaml ./Views/SettingsView.xaml ./ViewModels/IndexViewModel.cs ./ViewModels/IndexV…

0成本搭建自己的云数据库

第一步,租免费的云服务器 www.aliyun.com 阿里云的,可以免费租三个月 进入主页后选择云服务器ESC 选择这款,点击试用就行 第二步,配置服务器 在配置服务器系统的时候选择centos,省事,别选ubuntu&#x…

动手学深度学习——线性回归从零开始

生成数据集synthetic_data()读取数据集data_iter()初始化模型参数w, b定义模型:线性回归模型linreg()定义损失函数:均方损失squared_loss()定义优化算法:梯度下降sgd()进行训练:输出损失loss和估计误差 %matplotlib inline impor…

java项目之人才公寓管理系统(ssm+mysql+jsp)

风定落花生,歌声逐流水,大家好我是风歌,混迹在java圈的辛苦码农。今天要和大家聊的是一款基于ssm的人才公寓管理系统。技术交流和部署相关看文章末尾! 开发环境: 后端: 开发语言:Java 框架&…

iOS pod EaseIMKit库如何放在本地使用

在使用环信EaseIMKit库的时候,发现有些开发者需要改动库中的一些逻辑,或者有UI上的一些调整,如果直接去改pods里面的库,在之后的库版本升级会把之前修改过的代码覆盖掉,这个时候我们就需要pod指向本地的库,…

KubeVela篇05:为kubevela开发terraform-mycloud Addon插件

通过前面的章节,我们已经学习了解terraform,并通过vpc资源例子,为私有云/混合云开发了terraform provider,这一节介绍如何将我们开发的mycloud terraform provider整合到kubevela控制平台上,以通过在application中声明一个kubevela组件的方式去申请基础设施资源。 我们需…

【数据结构】---时间复杂度与空间复杂度

时间复杂度与空间复杂度 1.📉 时间复杂度📌1.1 时间复杂度的概念1.2 大O的渐进表示法 🏰空间复杂度📃例题分析1.案例(常数阶)2.案例(线性阶)3.案例:(平方阶&a…

css元素定位:通过元素的标签或者元素的id、class属性定位

前言 大部分人在使用selenium定位元素时,用的是xpath元素定位方式,因为xpath元素定位方式基本能解决定位的需求。xpath元素定位方式更直观,更好理解一些。 css元素定位方式往往被忽略掉了,其实css元素定位方式也有它的价值&…

【数据库 - 用户权限管理】(简略)

目录 一、概述 二、用户权限类型 1.ALL PRIVILEGES 2.CREATE 3.DROP 4.SELECT 5.INSERT 6.UPDATE 7.DELETE 8.INDEX 9.ALTER 10.CREATE VIEW和CREATE ROUTINE 11.SHUTDOWN 12GRANT OPTION 三、语句格式 1.用户赋权 2.权限删除 3.用户删除 一、概述 数据库用…

Redis多级缓存

文章目录 多级缓存背景JVM进程缓存Caffeine案例分析安装MySQL导入SQL Lua语法变量与循环数据类型声明变量循环 函数与条件控制函数条件控制 实现多级缓存安装OpenResty安装opm工具目录结构配置Nginx的环境变量运行启动 快速入门反向代理流程OpenResty监听请求编写item.lua 请求…

基于深度学习的高精度交通信号灯检测系统(PyTorch+Pyside6+YOLOv5模型)

摘要:基于深度学习的高精度交通信号灯检测识别可用于日常生活中检测与定位交通信号灯目标,利用深度学习算法可实现图片、视频、摄像头等方式的交通信号灯目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检…

AI > 语音识别开源项目列举

名称所属开发机构使用场景优缺点技术特点占有率描述CMU Sphinx卡内基梅隆大学嵌入式设备、服务器应用优点:可用于嵌入式设备和服务器应用。 缺点:准确率相对较低,适用范围有限。- 支持多种语言模型和工具。- 适用于嵌入式设备和服务器应用。中…

站在读者角度:10个技巧写出有价值的文章

站在读者的角度,以下是10个写出有价值的文章的技巧: 1.确定你的目标读者:在开始写作之前,确定你的目标读者是谁,这有助于你更好地针对他们的需求和兴趣来写作。 2.了解你的读者:通过调查、研究和互动&…

Unity UGUI的EventSystem(事件系统)组件的介绍及使用

Unity UGUI的EventSystem(事件系统)组件的介绍及使用 1. 什么是EventSystem组件? EventSystem是Unity UGUI中的一个重要组件,用于处理用户输入事件,如点击、拖拽、滚动等。它负责将用户输入事件传递给合适的UI元素&a…

【LeetCode】78.子集

题目 给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的子集(幂集)。 解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。 示例 1: 输入:nums [1,2,3] 输出:[[],[1],[2],[1…

vue实现@唤起列表功能(借助ElAutocomplete)

实现一个输入组件 myAutoComplete.vue <template><el-autocomplete ref"autoRef" :model-value"state" input"handleInput" :onkeyup"handleKey":fetch-suggestions"querySearch" select"handleSelect" …

Spring动态代理

一、代理 代理&#xff08;Proxy&#xff09;是一种设计模式&#xff0c;提供了对目标对象的另外的访问方式。 代理意义&#xff1a;可以再目标对象代码实现的基础上&#xff0c;增强额外的功能代码。 二、静态代理 静态代理&#xff0c;编译时就已经确定下来了接口代理类被…

LeetCode每日一题-接雨水

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 示例 1&#xff1a; 输入&#xff1a;height [0,1,0,2,1,0,1,3,2,1,2,1] 输出&#xff1a;6 解释&#xff1a;上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表…