提升爬虫OCR识别率:解决嘈杂验证码问题

亿牛云爬虫代理.png

引言

在数据抓取和网络爬虫技术中,验证码是常见的防爬措施,特别是嘈杂文本验证码。处理嘈杂验证码是一个复杂的问题,因为这些验证码故意设计成难以自动识别。本文将介绍如何使用OCR技术提高爬虫识别嘈杂验证码的准确率,并结合实际代码示例,展示如何使用爬虫代理IP技术来规避反爬措施。

正文

什么是OCR及其在爬虫中的应用

光学字符识别(OCR)是一种将图像中的文本转换为可编辑文本的技术。在爬虫技术中,OCR可以用来识别和解析验证码,从而自动化地完成数据抓取任务。嘈杂验证码通常包含复杂的背景、干扰线条和扭曲的字符,这使得OCR的识别变得更加困难。

提升OCR识别率的策略

  1. 预处理图像:通过图像处理技术(如灰度化、二值化、去噪)来增强验证码的可读性。
  2. 使用深度学习模型:如Tesseract OCR与深度学习模型相结合,可以显著提高识别率。
  3. 使用爬虫代理IP技术:避免IP被封禁,保持爬虫的连续性和稳定性。

实现代码示例

以下是一个使用Python实现的爬虫代码,包含了OCR识别、爬虫代理IP技术、设置User-Agent和Cookie等功能。

import requests
from PIL import Image
import pytesseract
from io import BytesIO
from bs4 import BeautifulSoup# 代理IP配置 亿牛云爬虫加强版
proxy = {'http': 'http://username:password@wwww.16yun.cn:8100','https': 'https://username:password@wwww.16yun.cn:8100'
}# 请求头配置
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36','Cookie': 'your_cookie_here'
}# 获取验证码图片
def get_captcha_image(url):response = requests.get(url, headers=headers, proxies=proxy)image = Image.open(BytesIO(response.content))return image# 图像预处理
def preprocess_image(image):gray = image.convert('L')  # 灰度化binary = gray.point(lambda x: 0 if x < 128 else 255, '1')  # 二值化return binary# OCR识别
def solve_captcha(image):preprocessed_image = preprocess_image(image)text = pytesseract.image_to_string(preprocessed_image, config='--psm 7')return text# 爬取数据
def scrape_data(url):response = requests.get(url, headers=headers, proxies=proxy)soup = BeautifulSoup(response.content, 'html.parser')# 数据处理逻辑return soup# 示例使用
captcha_url = 'http://example.com/captcha.jpg'
captcha_image = get_captcha_image(captcha_url)
captcha_text = solve_captcha(captcha_image)print(f'识别出的验证码文本: {captcha_text}')data_url = 'http://example.com/data'
scraped_data = scrape_data(data_url)
print(scraped_data.prettify())

实例

在实际操作中,我们可以使用上述代码,结合特定网站的验证码和数据结构来实现完整的爬虫任务。以下是一些具体步骤:

  1. 获取验证码图像:通过HTTP请求获取验证码图像。
  2. 图像预处理:对验证码图像进行灰度化和二值化处理,以提高OCR识别率。
  3. OCR识别验证码:使用Tesseract OCR库识别处理后的验证码文本。
  4. 数据爬取:使用爬虫代理IP和设置请求头,避免被目标网站封禁,顺利爬取所需数据。

结论

通过图像预处理和深度学习技术,可以显著提高OCR对嘈杂验证码的识别率。同时,使用爬虫代理IP技术能够有效规避反爬措施,确保爬虫的稳定性和连续性。本文提供的示例代码展示了如何实现这些技术,希望能为您的爬虫项目提供有价值的参考。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/868987.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

面向对象的程序设计设计思想(解决问题所需要的类),面向过程的程序设计思想(解决问题的步骤)

一、引言 面向对象思想是现代编程语言的主流编程思想&#xff0c;除了C语言外&#xff0c;其他的主流编程语言&#xff0c;无论是脚本的还是非脚本的&#xff0c;基本上都引入了面向对象这一设计思想&#xff0c;面向对象设计思想是怎样的&#xff1f;为什么现在的编程语言大都…

模型驱动开发(Model-Driven Development,MDD):提高软件开发效率与一致性的利器

目录 前言1. 模型驱动开发的原理1.1 什么是模型驱动开发1.2 MDD的核心思想 2. 模型驱动开发的优势2.1 提高开发效率2.2 确保代码一致性2.3 促进沟通和协作2.4 方便维护和扩展 3. 实现模型驱动开发的方法3.1 选择合适的建模工具3.1.1 UML3.1.2 BPMN3.1.3 SysML 3.2 建模方法3.2.…

大学生竞赛管理系统-计算机毕业设计源码37276

大学生竞赛管理系统的设计与实现 摘 要 随着教育信息化的不断发展&#xff0c;大学生竞赛已成为高校教育的重要组成部分。传统的竞赛组织和管理方式存在着诸多问题&#xff0c;如信息不透明、效率低下、管理不便等。为了解决这些问题&#xff0c;提高竞赛组织和管理效率&#x…

K8S 上部署大数据相关组件

文章目录 一、前言二、Redis 一、前言 Artifact Hub 是一个专注于云原生应用的集中式搜索和发布平台。它旨在简化开发者在 CNCF&#xff08;Cloud Native Computing Foundation&#xff09;项目中寻找、安装和分享包与配置的过程。用户可以通过这个平台方便地发现、安装各类云原…

用SurfaceView实现落花动画效果

上篇文章 Android子线程真的不能刷新UI吗&#xff1f;(一&#xff09;复现异常 中可以看出子线程更新main线程创建的View&#xff0c;会抛出异常。SurfaceView不依赖main线程&#xff0c;可以直接使用自己的线程控制绘制逻辑。具体代码怎么实现了&#xff1f; 这篇文章用Surfa…

vscode启用项目后,没有触发debugger

启动项目后在debugger时&#xff0c;一直不走断点&#xff0c;重启vscode和电脑&#xff0c;打开其他vscode项目&#xff0c;都不行 1.F12点击设置 2.然后取消忽略列表的勾选即可。

【力扣高频题】042.接雨水问题

上一篇我们通过采用 双指针 的方法解决了 经典 容器盛水 问题 &#xff0c;本文我们接着来学习一道在面试中极大概率会被考到的经典题目&#xff1a;接雨水 问题 。 42. 接雨水 给定 n 个非负整数&#xff0c;表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子…

Java-Redis-Clickhouse-Jenkins-MybatisPlus-Zookeeper-vscode-Docker-jdbc

文章目录 Clickhouse基础实操windows docker desktop 下载clickhousespringboot项目配置clickhouse Redis谈下你对Redis的了解&#xff1f;Redis一般都有哪些使用的场景&#xff1f;Redis有哪些常见的功能&#xff1f;Redis支持的数据类型有哪些&#xff1f;Redis为什么这么快…

第一个ffmpeg程序

在进行使用ffmpeg进行编写程序时&#xff0c;首先要记得进行注册设备&#xff08;avdevice_register_all &#xff09;&#xff0c;程序运行时&#xff0c;只需要注册一次就可以 avdevice_register_all 是 FFmpeg 多媒体处理库中的一个函数&#xff0c;其作用是注册所有可用的音…

【AI前沿】人工智能的历史演进

文章目录 &#x1f4d1;引言一、人工智能的起源与早期发展1.1 古代与早期的智能机器设想1.2 20世纪初期的机械计算机1.3 图灵测试与计算智能1.4 达特茅斯会议与人工智能的正式诞生 二、早期AI研究与第一次冬天2.1 早期的探索与挑战2.2 早期的专家系统2.3 第一次AI冬天 三、专家…

SpringBoot日常:@Scheduled实现服务启动时执行一次

文章目录 一、Scheduled详解二、逻辑实现1、创建定时任务逻辑方法2、新建一个启动执行类 三、测试结果 说到定时任务&#xff0c;我们应该会想起Scheduled&#xff0c;Quartz以及XXL-JOB&#xff0c;但是有的单体服务或者小项目&#xff0c;为了方便快捷&#xff0c;可能会直接…

【昇思25天学习打卡营第1天】

前言 例如&#xff1a;随着大模型的爆火&#xff0c;这门技术也越来越重要&#xff0c;很多人都开启了关于大模型知识的学习&#xff0c;但大模型需要一定的资源且涉及的模块很多&#xff0c;如果个人想要系统的学习会有些难度&#xff0c;好在有昇思大模型平台&#xff0c;能…

WebRTC群发消息API接口选型指南!怎么用?

WebRTC群发消息API接口安全性如何&#xff1f;API接口怎么优化&#xff1f; WebRTC技术在现代实时通信中占据了重要地位。对于需要实现群发消息功能的应用程序来说&#xff0c;选择合适的WebRTC群发消息API接口是至关重要的。AokSend将详细介绍WebRTC群发消息API接口的选型指南…

本地部署 SenseVoice - 阿里开源语音大模型

本地部署 SenseVoice - 阿里开源语音大模型 1. 创建虚拟环境2. 克隆代码3. 安装依赖模块4. 启动 WebUI5. 访问 WebUI 1. 创建虚拟环境 conda create -n sensevoice python3.11 -y conda activate sensevoice 2. 克隆代码 git clone https://github.com/FunAudioLLM/SenseVoic…

本地部署 Llama3 – 8B/70B 大模型!

Llama3&#xff0c;作为Meta公司新发布的大型语言模型&#xff0c;在人工智能领域引起了广泛的关注。特别是其8B&#xff08;80亿参数&#xff09;版本&#xff0c;在性能上已经超越了GPT-3.5&#xff0c;而且由于是开源的&#xff0c;用户可以在自己的电脑上进行部署。 本文和…

太多项会毁了回归

「AI秘籍」系列课程&#xff1a; 人工智能应用数学基础 人工智能Python基础 人工智能基础核心知识 人工智能BI核心知识 人工智能CV核心知识 多项式回归的过度拟合及其避免方法 通过添加现有特征的幂&#xff0c;多项式回归可以帮助你充分利用数据集。它允许我们甚至使用简…

【智能算法改进】多策略改进的蜣螂优化算法

目录 1.算法原理2.改进点3.结果展示4.参考文献5.代码获取 1.算法原理 【智能算法】蜣螂优化算法&#xff08;DBO&#xff09;原理及实现 2.改进点 混沌反向学习初始化 采用 Pwlcm 分段混沌映射&#xff0c;由于 Pwlcm 在其定义区间上具有均匀的密度函数&#xff0c;在特定的…

User parameters 用户参数与Web监控

目录 一. 自定义键介绍 二. 制作步骤 1. 添加无可变部分参数 2. 添加有可变参数 3. 使用用户参数监控php-fpm 服务的状态 三. Web页面导入应用监控 四. Web监控 主要功能和操作&#xff1a; 开启方式 官方预定义监控项文档https://www.zabbix.com/documentation/6…

华三m-lag三层转发+VRRP配置案例

目录 一、相关理论介绍 1.1 华三M-LAG介绍 1.2 DRCP协议 1.3 keepalive机制 1.4 MAD机制 1.5 一致性检查功能 二、M-LAG系统建立及工作过程 三、实验组网案例 3.1 组网需求 3.2 组网拓扑 3.3 设备接口及地址规划 四、具体配置命令 4.1 S6850-1的配置 4.2 S6850-2…

AI:助力开发者翱翔,而非抢夺其舞台

在当今这个科技飞速发展的时代&#xff0c;人工智能&#xff08;AI&#xff09;犹如一股春风&#xff0c;悄然渗透进全球各个行业&#xff0c;尤其在软件开发领域&#xff0c;其影响力日益显著。从初创企业到跨国巨头&#xff0c;无一不在积极探索AI如何重塑编程的面貌&#xf…