高创新 | CEEMDAN-VMD-GRU-Attention双重分解+门控循环单元+注意力机制多元时间序列预测

目录

    • 效果一览
    • 基本介绍
    • 模型设计
    • 程序设计
    • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

高创新 | CEEMDAN-VMD-GRU-Attention双重分解+门控循环单元+注意力机制多元时间序列预测
本文提出一种基于CEEMDAN 的二次分解方法,通过样本熵重构CEEMDAN 分解后的序列,复杂序列通过VMD 分解后,将各个分量分别通过GRU-Attention模型预测,最终将预测结果整合。

模型设计

1.Matlab实现CEEMDAN-VMD-GRU-Attention双重分解+门控循环单元+注意力机制多元时间序列预测(完整源码和数据)

2.CEEMDAN分解,计算样本熵,根据样本熵进行kmeans聚类,调用VMD对高频分量二次分解, VMD分解的高频分量与前分量作为卷积门控循环单元注意力机制模型的目标输出分别预测后相加。

3.多变量单输出,考虑历史特征的影响!评价指标包括R2、MAE、RMSE、MAPE等。

4.算法新颖。CEEMDAN-VMD-GRU-Attention模型处理数据,具有更高的准确率,能够跟踪数据的趋势以及变化。VMD 模型处理非线性、非平稳以及复杂的数据,表现得比EMD 系列更好,因此将重构的数据通过VMD 模型分解,提高了模型的准确度。

5.直接替换Excel数据即可用,注释清晰,适合新手小白,直接运行主文件一键出图。

6.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

  • 参考文献1

在这里插入图片描述
在这里插入图片描述

  • 参考文献2
    在这里插入图片描述
  • 参考文献3
  • 在这里插入图片描述
    在这里插入图片描述
    数据集
    在这里插入图片描述

程序设计

  • 完整程序私信博主回复CEEMDAN-VMD-GRU-Attention双重分解+门控循环单元+注意力机制多元时间序列预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));t_train = t_train';
t_test  = t_test' ;%%  数据格式转换
for i = 1 : Mp_train{i, 1} = P_train(:, :, 1, i);
endfor i = 1 : Np_test{i, 1}  = P_test( :, :, 1, i);
end%%  参数设置
options = trainingOptions('adam', ...      % Adam 梯度下降算法'MaxEpochs', 100, ...                  % 最大训练次数 'InitialLearnRate', 0.01, ...          % 初始学习率为0.01'LearnRateSchedule', 'piecewise', ...  % 学习率下降'LearnRateDropFactor', 0.1, ...        % 学习率下降因子 0.1'LearnRateDropPeriod', 70, ...         % 经过训练后 学习率为 0.01*0.1'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集'Verbose', 1);
figure
subplot(2,1,1)
plot(T_train,'k--','LineWidth',1.5);
hold on
plot(T_sim_a','r-','LineWidth',1.5)
legend('真实值','预测值')
title('CEEMDAN-VMD-CNN-GRU-Attention训练集预测效果对比')
xlabel('样本点')
ylabel('数值')
subplot(2,1,2)
bar(T_sim_a'-T_train)
title('CEEMDAN-VMD-GRU-Attention训练误差图')
xlabel('样本点')
ylabel('数值')disp('…………测试集误差指标…………')
[mae2,rmse2,mape2,error2]=calc_error(T_test,T_sim_b');
fprintf('\n')figure
subplot(2,1,1)
plot(T_test,'k--','LineWidth',1.5);
hold on
plot(T_sim_b','b-','LineWidth',1.5)
legend('真实值','预测值')
title('CEEMDAN-VMD-GRU-Attention测试集预测效果对比')
xlabel('样本点')
ylabel('数值')
subplot(2,1,2)
bar(T_sim_b'-T_test)
title('CEEMDAN-VMD-GRU-Attention测试误差图')
xlabel('样本点')
ylabel('数值')

参考资料

[1] https://hmlhml.blog.csdn.net/article/details/135536086?spm=1001.2014.3001.5502
[2] https://hmlhml.blog.csdn.net/article/details/137166860?spm=1001.2014.3001.5502
[3] https://hmlhml.blog.csdn.net/article/details/132372151

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/868578.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redhat 安装 docker 网络连接超时问题

目录 添加阿里云的Docker CE仓库 更新YUM缓存 安装 Docker Engine 启动并设置Docker自启动 验证 Docker 安装 [userlocalhost ~]$ sudo yum-config-manager --add-repohttps://download.docker.com/linux/centos/docker-ce.repo 正在更新 Subscription Management 软件仓库…

Linux安装Jmeter及简单使用教程

Linux安装Jmeter 首先需要java环境 java --version官网 下载二进制包 #创建文件夹 sudo mkdir /usr/local/jmeter #解压 sudo tar zxvf apache-jmeter-5.6.3.tgz -C /usr/local/jmeter编辑配置文件 sudo vim /etc/profile,添加以下内容 export JMETER_HOME/usr/l…

Linux环境部署Python Web服务

“姑娘,再见面就要靠运气了,可别装作不认识,那句“好久不见”可干万别打颤…” 将使用 Python 编写的后端 API 部署到 Linux 环境中,可以按照以下详细步骤操作。本文将涵盖环境准备、API 编写、使用 Gunicorn 作为 WSGI 服务器、配…

1-3分钟爆款视频素材在哪找啊?这9个热门爆款素材网站分享给你

在如今快节奏的时代,短视频已成为吸引观众注意力的黄金手段。然而,要制作出1-3分钟的爆款视频,除了创意和剪辑技巧外,选择合适的素材至关重要。那么,哪里可以找到那些能让你的视频脱颖而出的爆款素材呢?不用…

鸿蒙开发:Universal Keystore Kit(密钥管理服务)【加解密(ArkTS)】

加解密(ArkTS) 以AES 128密钥为例,完成加解密。具体的场景介绍及支持的算法规格。 开发步骤 生成密钥 指定密钥别名。初始化密钥属性集。调用[generateKeyItem]生成密钥,具体请参考[密钥生成]。开发前请熟悉鸿蒙开发指导文档:gitee.com/l…

yolov8-seg分割模型TensorRt部署,去掉torch

已完成的yolov8-seg分割模型TensorRt部署 准备下载yolov8-seg模型转化为onnx和trt推理写好的推理接口 准备 https://github.com/songjiahao-wq/yolov8_seg_trtinference.git下载代码 安装TensorRt8.6版本,以及pip install -r requirements.txt 下载yolov8-seg模型…

【web APIs】快速上手Day05(Bom操作)

目录 Web APIs - 第5天笔记js组成window对象BOM定时器-延迟函数案例-5秒钟之后消失的广告 JS执行机制location对象案例-5秒钟之后跳转的页面 navigator对象histroy对象 本地存储(今日重点)localStorage(重点)sessionStorage&#…

三、mysql-万字长文读懂mysql

mysql 三、 Mysql3.1 基础3.1.1 mysql执行流程-组成架构3.2 索引3.2.1 索引底层的数据结构与算法分类在创建表时,InnoDB 存储引擎会根据不同的场景选择不同的列作为索引B+树结构3.2.2 为什么 MySQL InnoDB 选择 B+tree 作为索引的数据结构3.2.2.1. 从磁盘角度出发3.2.2.2. 数据…

深度解析移动硬盘“函数不正确”错误及高效恢复策略

在数据密集型的社会中,移动硬盘作为移动存储的重要载体,承载着无数用户的个人信息、工作资料及珍贵回忆。然而,当遭遇“函数不正确”的错误时,这些宝贵的数据仿佛被一层无形的屏障所阻隔,让人束手无策。本文将深入探讨…

如何选择高性价比的土壤检测仪器?

在现代农业与环保领域,土壤检测仪器的选择显得尤为关键。它不仅关系到土壤养分管理、作物健康生长,还涉及到环境保护和可持续发展。那么,面对市场上琳琅满目的土壤检测仪器,我们该如何选择一款实用的设备呢? 首先&…

(1)滑动窗口算法介绍与练习:长度最小的子数组

滑动窗口算法介绍 所谓滑动窗口,即为同向双指针移动过程中形成的间隔区域,并且这两个指针在移动的过程中不会回退 对于滑动窗口的题目可以抽象为三个步骤: 定义窗口两端指针left和right进入窗口判断离开窗口循环2、3和4步 滑动窗口练习 长度最…

短视频电商源码的优势及软件架构解析

短视频电商源码是目前电商行业中非常火热的一个新兴领域,它通过短视频内容和电商商品的结合,为用户提供了一种新的购物体验。下面将介绍短视频电商源码的优势以及软件架构。 首先,短视频电商源码具有以下几个优势: 1、创新的购物体…

惠海 H6118 DCDC降压恒流芯片IC 30V36v40V降12V 9V LED景观灯舞台灯方案

H6118是一款连续电感电流导通模式的降压型LED恒流驱动器,用于驱动一个或多个LED 灯串。H6118工作电压从4V到30V,提供可调的输出电流,最大输出电流可达到1.2A。 H6118内置功率开关管,采用高端电流检测电路,支持PWM模式…

云联壹云 FinOps:赋能某车企公有云成本管理与精细化运营

背景 某车企,世界 500 强企业,使用了大量的公有云资源,分布于多家公有云,月消费在千万级别。 业务线多且分散,相关的云消耗由一个核心团队进行管理,本次案例的内容将围绕这些云成本的管理展开的。 需求 …

用例导图CMind

突然有一些觉悟,程序猿不能只会吭哧吭哧的低头做事,应该学会怎么去展示自己,怎么去宣传自己,怎么把自己想做的事表述清楚。 于是,这两天一直在整理自己的作品,也为接下来的找工作多做点准备。接下来…

超详细kkFileView打包部署Windows或Liunx

目录 前言 下载源码编辑打包 Windows下的部署 Liunx下的部署 前言 本文章主要以下载源码 自己编译打包的方式进行部署。 因为4.0.0之后官方不在初始jar包,所以自己拉代码吧,别偷懒,顺便看看代码怎么写的。 码云: kkFileView 下载源代码为4.4.0-beta版本,亲测可用 下载源…

C++的map / multimap容器

一、介绍 在C的map / multimap容器中,所有的元素均是pair类型(有关pair类型可以参考我之前写的 《C的set / multiset容器》的3.2中有介绍到)。 每对pair的第一个元素被称为关键字key,第二个元素被称为值value。因此,ma…

Linux 复现Docker NAT网络

Linux 复现Docker NAT网络 docker 网络的构成分为宿主机docker0网桥和为容器创建的veth 对构成。这个默认网络命名空间就是我们登陆后日常使用的命名空间 使用ifconfig命令查看到的就是默认网络命名空间,docker0就是网桥,容器会把docker0当成路由&…

43、nginx的优化、防盗链、重定向、代理

nginx的优化、防盗链、重定向、代理 一、nginx的优化 1.1、隐藏版本号 server_tokens off;隐藏版本号 [roottest1 conf]# vim nginx.confserver_tokens off;[roottest1 conf]# nginx -t nginx: the configuration file /usr/local/nginx/conf/nginx.conf syntax is ok ngin…

卫星IoT产品发展前景

卫星IoT产品发展前景 一、概述 卫星IoT产品是指利用卫星通信技术实现物联网设备互联互通的解决方案。随着卫星互联网技术的快速发展,卫星IoT产品正逐渐成为解决偏远地区、海洋、航空等场景下物联网连接问题的重要手段。 二、性能特点 广泛覆盖: 卫星…