线性代数基础-行列式

一、行列式之前的概念

1.全排列:

把n个不同的元素排成一列,称为n个元素的全排列,简称排列

(实际上就是我们所说的排列组合符号是Aarrange

2.标准序列:

前一项均小于后一项的序列就是标准序列

比如 1,3,6,7,9就是标准序列

3.逆序数:

序列中满足前一项大于后一项的数对个数

比如有一个序列:{1,6,9,2,3,4}
遍历该序列,看每个数之前有几个数比它大,加和就是逆序数的值

4.奇偶排列

排列的奇偶性与逆序数的奇偶性相同

5.对换

将序列里任意两个元素交换,这个过程叫对换

对换相邻元素的,称为“相邻对换”

经过任一次对换,排列的奇偶性改变

奇排列变成标准序列的对换次数是奇数,偶排列变成标准序列的对换次数是偶数

二、N阶行列式的展开

∣ a b c d ∣ = a d − b c \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad-bc acbd =adbc

有n行n列的这样的式子是n阶行列式,上图为二阶行列式

∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = ( a 11 ∗ a 22 ∗ a 33 ) − ( a 11 ∗ a 23 ∗ a 32 ) + ( a 12 ∗ a 23 ∗ a 31 ) − ( a 12 ∗ a 21 ∗ a 32 ) + ( a 13 ∗ a 21 ∗ a 32 ) − ( a 13 ∗ a 22 ∗ a 31 ) \begin{vmatrix} a11 & a12&a13 \\ a21 & a22&a23\\ a31&a32&a33 \end{vmatrix} = (a11*a22*a33)-(a11*a23*a32)+(a12*a23*a31)-(a12*a21*a32)+(a13*a21*a32)-(a13*a22*a31) a11a21a31a12a22a32a13a23a33 =(a11a22a33)(a11a23a32)+(a12a23a31)(a12a21a32)+(a13a21a32)(a13a22a31)

而行列式的值应按照以下规则计算
按**序列奇偶性(见上文)**决定符号,并逐行把数字相乘:
在这里插入图片描述
我们可以把矩阵理解为一个值,甚至常数,所以它满足我们学过的一切乘法,加法性质

三、三角行列式

主对角线:左上到右下
上三角行列式的主对角线下方都是0,行列式值等于主对角线乘积
注意:左下到右上不是主对角线

1.三角行列式

上三角行列式
∣ 1 2 3 0 1 2 0 0 2 ∣ = 1 ∗ 1 ∗ 2 \begin{vmatrix} 1 & 2 &3\\ 0 & 1&2\\ 0&0&2 \end{vmatrix} = 1 * 1 *2 100210322 =112
下三角行列式
∣ 1 0 0 4 1 0 3 1 2 ∣ = 1 ∗ 1 ∗ 2 \begin{vmatrix} 1 & 0 &0\\ 4 & 1&0\\ 3&1&2 \end{vmatrix} = 1 * 1 *2 143011002 =112
对角行列式
∣ 1 0 0 0 1 0 0 0 2 ∣ = 1 ∗ 1 ∗ 2 \begin{vmatrix} 1 & 0 &0\\ 0 & 1&0\\ 0&0&2 \end{vmatrix} = 1 * 1 *2 100010002 =112

四、行列式的性质

1.转置

对每一列,从上到下书写到行上,行列式的值不变
D = ∣ a b c d e f g h i ∣ = D T = ∣ a d g b e h c f i ∣ D = \begin{vmatrix} a & b &c\\ d & e&f\\ g&h&i \end{vmatrix} =D^T= \begin{vmatrix} a & d &g\\ b & e&h\\ c&f&i \end{vmatrix} D= adgbehcfi =DT= abcdefghi

2.交换

我们可以交换行列式的任意两行或者两列,但是会导致值变为相反数
推论1:若行列式D交换一次后,仍等于D,则D=0
推论2:若行列式有两行(列)相等,则行列式为0(交换后D=-D)
∣ a b c d e f g h i ∣ = ( − 1 ) ∗ ∣ a b c g h i d e f ∣ \begin{vmatrix} a & b &c\\ d & e&f\\ g&h&i \end{vmatrix} = (-1)* \begin{vmatrix} a & b &c\\ g & h&i\\ d & e&f \end{vmatrix} adgbehcfi =(1) agdbhecif

3.提取

我们可以把任意一个行或者一列的系数提取到行列式之前
推论:若两行(列)成比例,则行列式为0

∣ 2 a 2 b 2 c 2 d 2 e 2 f g h i ∣ = 2 ∗ ∣ 2 a 2 b 2 c d e f g h i ∣ \begin{vmatrix} 2a &2 b &2c\\ 2d & 2e&2f\\ g&h&i \end{vmatrix} =2* \begin{vmatrix} 2a & 2b &2c\\ d & e&f\\ g&h&i \end{vmatrix} 2a2dg2b2eh2c2fi =2 2adg2beh2cfi

4.拆分

∣ a + x b + y c + z d + w ∣ = ∣ a b + y c d + w ∣ + ∣ x b + y z d + w ∣ \begin{vmatrix} a +x& b+y\\ c +z& d+w\\ \end{vmatrix} = \begin{vmatrix} a & b+y\\ c & d+w\\ \end{vmatrix} + \begin{vmatrix} x& b+y\\ z& d+w\\ \end{vmatrix} a+xc+zb+yd+w = acb+yd+w + xzb+yd+w
我们可以把行列式任意行(列)拆分成和的形式,然后转换为行列式的和
但是要注意我们每次只能拆分一行(列),多行(列)拆分是错误的
∣ a + x b + y c + z d + w ∣ = ∣ a b c d ∣ + ∣ x y z w ∣ \cancel{ \begin{vmatrix} a +x& b+y\\ c +z& d+w\\ \end{vmatrix} = \begin{vmatrix} a & b\\ c & d\\ \end{vmatrix} + \begin{vmatrix} x& y\\ z& w\\ \end{vmatrix}} a+xc+zb+yd+w = acbd + xzyw

5.调整

把任意一行(列)乘以k之后可以加到另一行(列)上,行列式不变
通常这样得到三角行列式来快捷计算
∣ a b c d e f g h i ∣ = ∣ a b c d + k ∗ a e + k ∗ b f + k ∗ c g h i ∣ ( k 任取 ) \begin{vmatrix} a & b &c\\ d & e&f\\ g&h&i \end{vmatrix} = \begin{vmatrix} a & b &c\\ d+k *a & e+k*b&f+k*c\\ g&h&i \end{vmatrix} (k任取) adgbehcfi = ad+kagbe+kbhcf+kci (k任取)
例如我们可以轻易把某些行列式调整为三角行列式
∣ 1 1 2 4 3 1 3 2 2 ∣ = ∣ 1 1 2 0 − 1 − 7 0 − 1 − 4 ∣ = ∣ 1 1 2 0 − 1 − 7 0 0 3 ∣ = 1 ∗ ( − 1 ) ∗ 3 = − 3 \begin{vmatrix} 1 & 1 &2\\ 4 & 3&1\\ 3&2&2 \end{vmatrix} = \begin{vmatrix} 1 & 1 &2\\ 0 & -1&-7\\ 0&-1&-4 \end{vmatrix} = \begin{vmatrix} 1 & 1 &2\\ 0 & -1&-7\\ 0&0&3 \end{vmatrix} = 1*(-1)*3 = -3 143132212 = 100111274 = 100110273 =1(1)3=3

五、行列式的余子式和代数余子式

1.余子式

D = ∣ a b c d e f g h i ∣ D =\begin{vmatrix} a & b &c\\ d & e&f\\ g&h&i \end{vmatrix} D= adgbehcfi

M i j 是把 D 划去第 i 行 j 列的 ( n − 1 ) 阶行列式 M_{ij}是把D划去第i行j列的(n-1)阶行列式 Mij是把D划去第ij列的(n1)阶行列式

M 22 = ∣ a b c d e f g h i ∣ = ∣ a c g i ∣ M_{22} = \begin{vmatrix} a & \cancel{b} &c\\ \cancel{d} & \cancel{e} & \cancel{f} \\ g& \cancel{h} &i \end{vmatrix} = \begin{vmatrix} a &c\\ g & i\\ \end{vmatrix} M22= ad gb e h cf i = agci

2.代数余子式

A i j = ( − 1 ) i + j M i j A_{ij} = (-1)^{i+j} M_{ij} Aij=(1)i+jMij

3.按行或按列展开

D n = a i 1 A i 1 + a i 2 A i 2 + . . . + a i n A i n D_{n}=a_{i1}A_{i1}+a_{i2}A_{i2}+...+a_{in}A_{in} Dn=ai1Ai1+ai2Ai2+...+ainAin
这是按行展开,其实就是对某一行遍历,然后划掉当前元素所在行列求代数余子式,然后乘当前位置的值,按列展开同理。

六、特殊行列式

1.和固定型

D n = ∣ a b b . . . b b a b . . . b b b a . . . b . . . . . . . . . . . . . . . . . . . . . . . . . . . b b b . . . b a ∣ = ∣ a + n b a + n b a + n b . . . a + n b b a b . . . b b b a . . . b . . . . . . . . . . . . . . . . . . . . . . . . . . . b b b . . . b a ∣ D_{n} =\begin{vmatrix} a & b &b&...&b\\ b & a&b&...&b\\ b&b&a&...&b\\ ...&...&...&...&...\\ ...&...&...&...&b\\ b&b&...&b&a\\ \end{vmatrix} = \begin{vmatrix} a+nb & a+nb &a+nb&...&a+nb\\ b & a&b&...&b\\ b&b&a&...&b\\ ...&...&...&...&...\\ ...&...&...&...&b\\ b&b&...&b&a\\ \end{vmatrix} Dn= abb......bbab......bbba........................bbbb...ba = a+nbbb......ba+nbab......ba+nbba........................ba+nbbb...ba

= ( a + n b ) ∣ 1 1 1 . . . 1 b a b . . . b b b a . . . b . . . . . . . . . . . . . . . . . . . . . . . . . . . b b b . . . b a ∣ =(a+nb) \begin{vmatrix} 1 & 1 &1&...&1\\ b & a&b&...&b\\ b&b&a&...&b\\ ...&...&...&...&...\\ ...&...&...&...&b\\ b&b&...&b&a\\ \end{vmatrix} =(a+nb) 1bb......b1ab......b1ba........................b1bb...ba
接下来就可以愉快的用第一行把行列式消成三角了
= ( a + n b ) ∣ 1 1 1 . . . 1 0 a − b 0 . . . 0 0 0 a − b . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 . . . 0 a − b ∣ = ( a − b ) n − 1 =(a+nb) \begin{vmatrix} 1 & 1 &1&...&1\\ 0 & a-b&0&...&0\\ 0&0&a-b&...&0\\ ...&...&...&...&...\\ ...&...&...&...&0\\ 0&0&...&0&a-b\\ \end{vmatrix} = (a-b)^{n-1} =(a+nb) 100......01ab0......010ab........................0100...0ab =(ab)n1

2.范德蒙德行列式

D n = ∣ x 1 0 x 2 0 x 3 0 . . . x n 0 x 1 1 x 2 1 x 3 1 . . . x n 1 x 1 2 x 2 2 x 3 2 . . . x n 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . x n n − 1 x 1 n x 2 n x 3 n . . . x n n ∣ = ∣ 1 1 1 . . . 1 x 1 1 x 2 1 x 3 1 . . . x n 1 x 1 2 x 2 2 x 3 2 . . . x n 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . x n n − 1 x 1 n x 2 n x 3 n . . . x n n ∣ D_{n} = \begin{vmatrix} x_1^0 & x_2^0 &x_3^0&...&x_n^0\\ x_1^1 & x_2^1 &x_3^1&...&x_n^1\\ x_1^2 & x_2^2 &x_3^2&...&x_n^2\\ ...&...&...&...&...\\ ...&...&...&...&x_n^{n-1}\\ x_1^n & x_2^n&x_3^n&...&x_n^n\\ \end{vmatrix}=\begin{vmatrix} 1 & 1 &1&...&1\\ x_1^1 & x_2^1 &x_3^1&...&x_n^1\\ x_1^2 & x_2^2 &x_3^2&...&x_n^2\\ ...&...&...&...&...\\ ...&...&...&...&x_n^{n-1}\\ x_1^n & x_2^n&x_3^n&...&x_n^n\\ \end{vmatrix} Dn= x10x11x12......x1nx20x21x22......x2nx30x31x32......x3n..................xn0xn1xn2...xnn1xnn = 1x11x12......x1n1x21x22......x2n1x31x32......x3n..................1xn1xn2...xnn1xnn

这样的行列式称为“范德蒙德行列式”
一般按照以下规则计算

D n = ∏ 1 < = i < j < = n ( x j − x i ) = − − − − − − − − − − − − − − − − − − − − − − − − − − − − ( x n − x n − 1 ) ( x n − x n − 2 ) . . . ( x n − x 1 ) ( x n − 1 − x n − 2 ) ( x n − 1 − x n − 3 ) . . . ( x n − 1 − x 1 ) . . . ( x 3 − x 2 ) ( x 3 − x 1 ) ( x 2 − x 1 ) D_n = \prod_{1<=i<j<=n}{(x_j-x_i)} = \\ ----------------------------\\ (x_n-x_{n-1})(x_n-x_{n-2})...(x_n-x_{1})\\(x_{n-1}-x_{n-2})(x_{n-1}-x_{n-3})...(x_{n-1}-x_{1})\\ ...\\ (x_{3}-x_{2})(x_{3}-x_{1})\\ (x_{2}-x_{1}) Dn=1<=i<j<=n(xjxi)=(xnxn1)(xnxn2)...(xnx1)(xn1xn2)(xn1xn3)...(xn1x1)...(x3x2)(x3x1)(x2x1)

证明过程如下
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

七、克莱姆法则(Cramer’s Rule)

{ a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 + . . . + a 2 n x n = b 2 . . . a n 1 x 1 + a n 2 x 2 + a n 3 x 3 + . . . + a n n x n = b n \begin{cases} a_{11}x_1 + a_{12}x_2+a_{13}x_3 +... +a_{1n}x_n= b_1 \\ a_{21}x_1 + a_{22}x_2+a_{23}x_3 +... +a_{2n}x_n= b_2 \\ ...\\ a_{n1}x_1 + a_{n2}x_2+a_{n3}x_3 +... +a_{nn}x_n= b_n \end{cases} a11x1+a12x2+a13x3+...+a1nxn=b1a21x1+a22x2+a23x3+...+a2nxn=b2...an1x1+an2x2+an3x3+...+annxn=bn
对于这样一个方程组,我们定义一个行列式,只存它的系数,称为”系数行列式
D n = ∣ a 11 a 12 a 13 . . . a 1 n a 21 a 22 a 23 . . . a 2 n a 31 a 32 a 33 . . . a 3 n . . . . . . . . . . . . . . . . . . . . . . . . . . . a ( n − 1 ) n a n 1 a n 2 . . . a n ( n − 1 ) a n n ∣ D_{n} =\begin{vmatrix} a_{11} & a_{12} &a_{13}&...&a_{1n}\\ a_{21} & a_{22}&a_{23}&...&a_{2n}\\ a_{31}&a_{32}&a_{33}&...&a_{3n}\\ ...&...&...&...&...\\ ...&...&...&...&a_{(n-1)n}\\ a_{n1}&a_{n2}&...&a_{n(n-1)}&a_{nn}\\ \end{vmatrix} Dn= a11a21a31......an1a12a22a32......an2a13a23a33........................an(n1)a1na2na3n...a(n1)nann

应用:克莱姆法则判断具有N个方程、N个未知数的线性方程组的解:

  • 当方程组的系数行列式不等于零时,方程组且具有唯一解;
  • 如果方程组无解或者有两个不同的解,方程组的系数行列式等于零
  • 克莱姆法则不仅仅适用于实数域,它在任何域上面都成立。

克莱姆法则的局限性:

  • 方程个数与未知数的个数不同时,系数的行列式等于零时,克莱姆法则失效。
  • 运算量较大,求解一个N阶线性方程组要计算N+1个N阶行列式

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/86780.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[Linux入门]---管理者操作系统

文章目录 1.操作系统概念2.设计操作系统的目的3.操作系统如何进行管理系统调用和库函数概念 1.操作系统概念 任何计算机系统都包含一个基本的程序集合&#xff0c;称为操作系统(OS)。笼统的理解&#xff0c;操作系统包括&#xff1a; 内核&#xff08;进程管理&#xff0c;内存…

ISP技术概述

原本或许是为了对冲手机系统和APP设计无力感而诞生的拍照功能,现今却成为了众手机厂家除背部设计外为数不多可“卷”的地方,自拍、全景、夜景、小视频等旺盛的需求让这一技术的江湖地位迅速变化。对圈内人士而言,这一波变化带来的后摄、双摄、多摄、暗光、防抖、广角、长焦、…

AVLoadingIndicatorView - 一个很好的Android加载动画集合

官网 GitHub - HarlonWang/AVLoadingIndicatorView: DEPRECATED 项目简介 AVLoadingIndicatorView is a collection of nice loading animations for Android. You can also find iOS version of this here. Now AVLoadingIndicatorView was updated version to 2.X , If …

GitStats - 统计Git所有提交记录工具

如果你是研发效能组的一员或者在从事 CI/CD 或 DevOps&#xff0c;除了提供基础设施&#xff0c;指标和数据是也是一个很重要的一环&#xff0c;比如需要分析下某个 Git 仓库代码提交情况&#xff1a; 该仓库的代码谁提交的代码最多 该仓库的活跃度是什么样子的 各个时段的提交…

安装Linux虚拟机——以ubuntukylin-16.04.7-desktop-amd64.iso为例

正文 安装VMware 重要提示 安装软件之前&#xff0c;请先退出360、电脑管家等安全类软件&#xff0c;这类软件会阻止我们安装的软件进行注册表注册&#xff0c;很可能导致安装失败。确认物理机&#xff08;也就是你自己使用的电脑&#xff09;的防火墙已经关闭。 下载 打开…

python web编程一:token、session、cookie、密码加解密

1 认证 1 传统的session-cookie机制 HTTP协议是无状态协议&#xff0c;为了解决它产生了cookie和session技术。 浏览器发起第一次请求到服务器&#xff0c;服务器发现浏览器没有提供session id&#xff0c;就认为这是第一次请求&#xff0c;会返回一个新的session id给浏览器…

数据仓库整理

数仓 olap vs oltp OLTP主要用于支持日常的业务操作&#xff0c;如银行交易、电子商务等&#xff0c;强调数据的准确性、实时性和并发性。OLAP主要用于支持复杂的数据分析&#xff0c;如数据仓库、决策支持等&#xff0c;强调数据的维度、聚合和可视化。 将OLTP数据库的数据…

C++之lseek64应用总结(二百三十六)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

CMU15-445 format\clang-format\clang-tidy 失败

CMU15-445 format\clang-format\clang-tidy 失败 问题修改 问题 -- Setting build type to Debug as none was specified. -- Youre using Clang 14.0.0 CMake Warning at CMakeLists.txt:67 (message):BusTub/main couldnt find clang-format.CMake Warning at CMakeLists.tx…

Python中使用EMD(经验模态分解)

在Python中使用EMD&#xff08;经验模态分解&#xff09;进行信号分解时&#xff0c;通常可以设置信号分解的数目。EMD算法的目标是将信号分解成多个称为“本征模态函数”&#xff08;Intrinsic Mode Functions&#xff0c;简称IMF&#xff09;的成分&#xff0c;每个IMF都代表…

【设计模式】组合模式

文章目录 1.组合模式定义2.组合模式的结构2.1. 安全式组合模式的结构2.2.透明式组合模式的结构 3.组合模式实战案例3.1.场景说明3.2.关系类图3.3.代码实现 4.组合模式优缺点5.组合模式适用场景6.组合模式总结 主页传送门&#xff1a;&#x1f481; 传送 1.组合模式定义 组合模式…

服务注册发现_actuator微服务信息完善

SpringCloud体系里的&#xff0c;服务实体向eureka注册时&#xff0c;注册名默认是IP名:应用名:应用端口名。 问题&#xff1a; 自定义服务在Eureka上的实例名怎么弄呢 在服务提供者pom中配置Actuator依赖 <!-- actuator监控信息完善 --> <dependency><groupId…

2 C++中的引用

C中的引用 上节说到&#xff0c;变量名实际上是一段连续存储空间的别名。很显然我们可以将其命名为其它名字&#xff0c;就像我们有乳名、小名一样。 C引入了引用的概念。 引用可以看作一个已定义变量的别名引用的语法 type& name variate;普通引用在声明时必须用其它的…

springboot和vue:二、springboot特点介绍+热部署热更新

springboot特点介绍 能够使用内嵌的Tomcat、Jetty服务器&#xff0c;不需要部署war文件。提供定制化的启动器Starters&#xff0c;简化Maven配置&#xff0c;开箱即用。纯Java配置&#xff0c;没有代码生成&#xff0c;也不需要XML配置。提供了生产级的服务监控方案&#xff0…

如何在 SOLIDWORKS中创建零件模板 硕迪科技

作为一款多功能且可大量定制的 3D CAD 软件&#xff0c;SOLIDWORKS模板可以通过自定义属性包含大量数据。可以通过为SOLIDWORKS零件、装配体和工程图创建模板来利用这些模板。 与其他一些CAD软件不同&#xff0c;SOLIDWORKS不限制您可以创建的模板数量 - 您可以根据需要创建任…

在项目中,关于前端实现数据可视化的技术选择

前言 在项目中&#xff0c;数据可视化以图表、报表类型为主。 需求背景 技术框架是Vue2.x版本&#xff0c;组件库是Ant Design of Vue能够支撑足够多的图表类型开发图表大小/位置能够随意变动图表样式需要支持丰富多样的用户配置强大、开放的图表语法支持复杂的数据可视化场景…

【深度学习实验】前馈神经网络(四):自定义逻辑回归模型:前向传播、反向传播算法

目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 三、实验内容 0. 导入必要的工具包 1. 逻辑回归Logistic类 a. 构造函数__init__ b. __call__(self, x)方法 c. 前向传播forward d. 反向传播backward 2. 模型训练 3. 代码整合 一、实验介绍 实现逻…

Linux 目录结构介绍

对上面的说明: root 目录 &#xff1a; linux 超级权限 root 的主目录 home 目录 &#xff1a; 系统默认的用户主目录&#xff0c;如果添加用户是不指定用户的主目录&#xff0c;默认在/home 下创建与用户同名的文件夹 bin 目录 &#xff1a; 存放系统所需要的重要命令&am…

uniapp Echart X轴Y轴文字被遮挡怎么办,或未能铺满整个容器

有时候布局太小&#xff0c;使用echarts&#xff0c;x轴y轴文字容易被遮挡&#xff0c;怎么解决这个问题呢&#xff0c;或者是未能铺满整个容器。 方法1&#xff1a; 直接设置 containLabel 字段 options: { grid: { containLabel: true, },} 方法2: 间接设置&#xff0c;但是…

【新版】系统架构设计师 - 案例分析 - 信息安全

个人总结&#xff0c;仅供参考&#xff0c;欢迎加好友一起讨论 文章目录 架构 - 案例分析 - 信息安全安全架构安全模型分类BLP模型Biba模型Chinese Wall模型 信息安全整体架构设计WPDRRC模型各模型安全防范功能 网络安全体系架构设计开放系统互联安全体系结构安全服务与安全机制…